|
import gradio as gr |
|
import torch |
|
import random |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
def load_model(model_path, dtype): |
|
if dtype == "fp32": |
|
torch_dtype = torch.float32 |
|
elif dtype == "fp16": |
|
torch_dtype = torch.float16 |
|
else: |
|
raise ValueError("Invalid dtype. Only 'fp32' or 'fp16' are supported.") |
|
|
|
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch_dtype) |
|
return model |
|
|
|
def generate( |
|
prompt, |
|
history, |
|
max_new_tokens, |
|
repetition_penalty, |
|
temperature, |
|
top_p, |
|
top_k, |
|
seed_checkbox, |
|
seed, |
|
model_path="roborovski/superprompt-v1", |
|
dtype="fp16", |
|
): |
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") |
|
model = load_model(model_path, dtype) |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
print("Using GPU") |
|
else: |
|
device = "cpu" |
|
print("Using CPU") |
|
|
|
model.to(device) |
|
|
|
input_text = f"{prompt}, {history}" |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) |
|
|
|
if seed_checkbox: |
|
seed = random.randint(1, 100000) |
|
torch.manual_seed(seed) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
) |
|
|
|
better_prompt = tokenizer.decode(outputs[0]) |
|
return better_prompt |
|
|
|
additional_inputs = [ |
|
gr.Slider( |
|
value=512, |
|
minimum=250, |
|
maximum=512, |
|
step=1, |
|
interactive=True, |
|
label="Max New Tokens", |
|
info="The maximum numbers of new tokens, controls how long is the output", |
|
), |
|
gr.Slider( |
|
value=1.2, |
|
minimum=0, |
|
maximum=2, |
|
step=0.05, |
|
interactive=True, |
|
label="Repetition Penalty", |
|
info="Penalize repeated tokens, making the AI repeat less itself", |
|
), |
|
gr.Slider( |
|
value=0.5, |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
label="Temperature", |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
value=1, |
|
minimum=0, |
|
maximum=2, |
|
step=0.05, |
|
interactive=True, |
|
label="Top P", |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
value=1, |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
interactive=True, |
|
label="Top K", |
|
info="Higher k means more diverse outputs by considering a range of tokens", |
|
), |
|
gr.Checkbox( |
|
value=False, |
|
label="Use Random Seed", |
|
info="Check to use a random seed for the generation process", |
|
change=update_ui, |
|
), |
|
gr.Number( |
|
value=42, |
|
interactive=True, |
|
label="Seed", |
|
info="A starting point to initiate the generation process", |
|
), |
|
gr.Radio( |
|
choices=["fp32", "fp16"], |
|
value="fp16", |
|
label="Model Precision", |
|
info="Select the precision of the model: fp32 or fp16", |
|
), |
|
] |
|
|
|
def update_ui(seed_checkbox): |
|
if seed_checkbox: |
|
return gr.Number.update(visible=False) |
|
else: |
|
return gr.Number.update(visible=True) |
|
|
|
|
|
examples = [ |
|
[ |
|
"Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.", |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
False, |
|
None, |
|
"roborovski/superprompt-v1", |
|
"fp16", |
|
] |
|
] |
|
|
|
gr.ChatInterface( |
|
fn=generate, |
|
chatbot=gr.Chatbot( |
|
show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel" |
|
), |
|
additional_inputs=additional_inputs, |
|
title="SuperPrompt-v1", |
|
description="Make your prompts more detailed!", |
|
examples=examples, |
|
concurrency_limit=20, |
|
).launch(show_api=False) |