File size: 3,977 Bytes
f97bf68 69855af f97bf68 244f082 31328c7 244f082 f97bf68 244f082 a81c6ef 244f082 f97bf68 244f082 f97bf68 244f082 a81c6ef 69855af a81c6ef 244f082 f97bf68 244f082 a81c6ef 69855af a81c6ef 244f082 f97bf68 69855af 244f082 a81c6ef 244f082 f97bf68 244f082 f97bf68 244f082 f97bf68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration
def load_model(model_path, dtype):
if dtype == "fp32":
torch_dtype = torch.float32
elif dtype == "fp16":
torch_dtype = torch.float16
else:
raise ValueError("Invalid dtype. Only 'fp32' or 'fp16' are supported.")
model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch_dtype)
return model
def generate(
prompt,
history,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
seed_checkbox,
seed,
model_path="roborovski/superprompt-v1",
dtype="fp16",
):
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = load_model(model_path, dtype)
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
model.to(device)
input_text = f"{prompt}, {history}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
if seed_checkbox:
seed = random.randint(1, 100000)
torch.manual_seed(seed)
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
better_prompt = tokenizer.decode(outputs[0])
return better_prompt
additional_inputs = [
gr.Slider(
value=512,
minimum=250,
maximum=512,
step=1,
interactive=True,
label="Max New Tokens",
info="The maximum numbers of new tokens, controls how long is the output",
),
gr.Slider(
value=1.2,
minimum=0,
maximum=2,
step=0.05,
interactive=True,
label="Repetition Penalty",
info="Penalize repeated tokens, making the AI repeat less itself",
),
gr.Slider(
value=0.5,
minimum=0,
maximum=1,
step=0.05,
interactive=True,
label="Temperature",
info="Higher values produce more diverse outputs",
),
gr.Slider(
value=1,
minimum=0,
maximum=2,
step=0.05,
interactive=True,
label="Top P",
info="Higher values sample more low-probability tokens",
),
gr.Slider(
value=1,
minimum=1,
maximum=100,
step=1,
interactive=True,
label="Top K",
info="Higher k means more diverse outputs by considering a range of tokens",
),
gr.Checkbox(
value=False,
label="Use Random Seed",
info="Check to use a random seed for the generation process",
change=update_ui,
),
gr.Number(
value=42,
interactive=True,
label="Seed",
info="A starting point to initiate the generation process",
),
gr.Radio(
choices=["fp32", "fp16"],
value="fp16",
label="Model Precision",
info="Select the precision of the model: fp32 or fp16",
),
]
def update_ui(seed_checkbox):
if seed_checkbox:
return gr.Number.update(visible=False)
else:
return gr.Number.update(visible=True)
examples = [
[
"Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.",
None,
None,
None,
None,
None,
None,
False,
None,
"roborovski/superprompt-v1",
"fp16",
]
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"
),
additional_inputs=additional_inputs,
title="SuperPrompt-v1",
description="Make your prompts more detailed!",
examples=examples,
concurrency_limit=20,
).launch(show_api=False) |