File size: 3,977 Bytes
f97bf68
 
69855af
f97bf68
 
244f082
 
 
 
 
 
 
31328c7
244f082
 
f97bf68
 
244f082
 
 
 
 
 
 
a81c6ef
244f082
 
 
f97bf68
244f082
 
 
 
 
 
 
 
 
 
 
 
f97bf68
 
244f082
a81c6ef
69855af
a81c6ef
 
244f082
 
 
 
 
 
 
 
 
 
f97bf68
 
 
244f082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a81c6ef
 
 
 
69855af
a81c6ef
244f082
 
 
 
 
 
 
 
 
 
 
 
f97bf68
 
69855af
 
 
 
 
 
 
244f082
 
 
 
 
 
 
 
 
a81c6ef
244f082
 
 
 
 
f97bf68
 
 
244f082
 
 
f97bf68
 
244f082
f97bf68
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration

def load_model(model_path, dtype):
    if dtype == "fp32":
        torch_dtype = torch.float32
    elif dtype == "fp16":
        torch_dtype = torch.float16
    else:
        raise ValueError("Invalid dtype. Only 'fp32' or 'fp16' are supported.")

    model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch_dtype)
    return model

def generate(
    prompt,
    history,
    max_new_tokens,
    repetition_penalty,
    temperature,
    top_p,
    top_k,
    seed_checkbox,
    seed,
    model_path="roborovski/superprompt-v1",
    dtype="fp16",
):
    tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
    model = load_model(model_path, dtype)

    if torch.cuda.is_available():
        device = "cuda"
        print("Using GPU")
    else:
        device = "cpu"
        print("Using CPU")

    model.to(device)

    input_text = f"{prompt}, {history}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)

    if seed_checkbox:
        seed = random.randint(1, 100000)
        torch.manual_seed(seed)

    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )

    better_prompt = tokenizer.decode(outputs[0])
    return better_prompt

additional_inputs = [
    gr.Slider(
        value=512,
        minimum=250,
        maximum=512,
        step=1,
        interactive=True,
        label="Max New Tokens",
        info="The maximum numbers of new tokens, controls how long is the output",
    ),
    gr.Slider(
        value=1.2,
        minimum=0,
        maximum=2,
        step=0.05,
        interactive=True,
        label="Repetition Penalty",
        info="Penalize repeated tokens, making the AI repeat less itself",
    ),
    gr.Slider(
        value=0.5,
        minimum=0,
        maximum=1,
        step=0.05,
        interactive=True,
        label="Temperature",
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        value=1,
        minimum=0,
        maximum=2,
        step=0.05,
        interactive=True,
        label="Top P",
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        value=1,
        minimum=1,
        maximum=100,
        step=1,
        interactive=True,
        label="Top K",
        info="Higher k means more diverse outputs by considering a range of tokens",
    ),
    gr.Checkbox(
        value=False,
        label="Use Random Seed",
        info="Check to use a random seed for the generation process",
        change=update_ui,
    ),
    gr.Number(
        value=42,
        interactive=True,
        label="Seed",
        info="A starting point to initiate the generation process",
    ),
    gr.Radio(
        choices=["fp32", "fp16"],
        value="fp16",
        label="Model Precision",
        info="Select the precision of the model: fp32 or fp16",
    ),
]

def update_ui(seed_checkbox):
    if seed_checkbox:
        return gr.Number.update(visible=False)
    else:
        return gr.Number.update(visible=True)


examples = [
    [
        "Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.",
        None,
        None,
        None,
        None,
        None,
        None,
        False,
        None,
        "roborovski/superprompt-v1",
        "fp16",
    ]
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(
        show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"
    ),
    additional_inputs=additional_inputs,
    title="SuperPrompt-v1",
    description="Make your prompts more detailed!",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)