Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from PyPDF2 import PdfReader | |
import docx | |
from langchain.chat_models import ChatOpenAI | |
from dotenv import load_dotenv | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from streamlit_chat import message | |
from langchain.callbacks import get_openai_callback | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="DocumentGPT", page_icon=":books:") | |
st.header(":books: CHAT WITH YOUR DOCUMENTS") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
if "processComplete" not in st.session_state: | |
st.session_state.processComplete = None | |
with st.sidebar: | |
uploaded_files = st.file_uploader("**:books: Upload your files**",accept_multiple_files=True) | |
openai_api_key = st.text_input("**:key: OpenAI API Key**" , type="password") | |
process = st.button("**Process**") | |
if process: | |
if not openai_api_key: | |
st.info("Please add your OpenAI API key to continue.") | |
st.stop() | |
with st.spinner("Processing"): | |
files_text = get_files_text(uploaded_files) | |
# get text chunks | |
text_chunks = get_text_chunks(files_text) | |
# create vetore stores | |
vetorestore = get_vectorstore(text_chunks) | |
st.sidebar.info('Processing Complete', icon="β ") | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vetorestore,openai_api_key) #for openAI | |
st.session_state.processComplete = True | |
if st.session_state.processComplete == True: | |
user_question = st.chat_input("Ask Question about your files.") | |
if user_question: | |
handel_userinput(user_question) | |
# Function to get the input file and read the text from it. | |
def get_files_text(uploaded_files): | |
text = "" | |
for uploaded_file in uploaded_files: | |
split_tup = os.path.splitext(uploaded_file.name) | |
file_extension = split_tup[1] | |
if file_extension == ".pdf": | |
text += get_pdf_text(uploaded_file) | |
elif file_extension == ".docx": | |
text += get_docx_text(uploaded_file) | |
else: | |
text += get_csv_text(uploaded_file) | |
return text | |
# Function to read PDF Files | |
def get_pdf_text(pdf): | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_docx_text(file): | |
doc = docx.Document(file) | |
allText = [] | |
for docpara in doc.paragraphs: | |
allText.append(docpara.text) | |
text = ' '.join(allText) | |
return text | |
def get_csv_text(file): | |
return "a" | |
def get_text_chunks(text): | |
# spilit ito chuncks | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=900, | |
chunk_overlap=100, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
# Using the hugging face embedding models | |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
# creating the Vectore Store using Facebook AI Semantic search | |
knowledge_base = FAISS.from_texts(text_chunks,embeddings) | |
return knowledge_base | |
def get_conversation_chain(vetorestore,openai_api_key): | |
llm = ChatOpenAI(openai_api_key=openai_api_key, model_name = 'gpt-3.5-turbo',temperature=0) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, skip_on_failure=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vetorestore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handel_userinput(user_question): | |
with get_openai_callback() as cb: | |
response = st.session_state.conversation({'question':user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
# Layout of input/response containers | |
response_container = st.container() | |
with response_container: | |
for i, messages in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
message(messages.content, is_user=True, key=str(i)) | |
else: | |
message(messages.content, key=str(i)) | |
if __name__ == '__main__': | |
main() | |