File size: 4,582 Bytes
84faacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81832da
84faacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
import os
from PyPDF2 import PdfReader
import docx
from langchain.chat_models import ChatOpenAI
from dotenv import load_dotenv
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from streamlit_chat import message
from langchain.callbacks import get_openai_callback

def main():
    load_dotenv()
    st.set_page_config(page_title="DocumentGPT", page_icon=":books:")
    st.header(":books: CHAT WITH YOUR DOCUMENTS")

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None
    if "processComplete" not in st.session_state:
        st.session_state.processComplete = None

    with st.sidebar:
        uploaded_files =  st.file_uploader("**:books: Upload your files**",accept_multiple_files=True)
        openai_api_key = st.text_input("**:key: OpenAI API Key**" , type="password")
        process = st.button("**Process**")
    if process:
        if not openai_api_key:
            st.info("Please add your OpenAI API key to continue.")
            st.stop()
        with st.spinner("Processing"):
            files_text = get_files_text(uploaded_files)
            # get text chunks
            text_chunks = get_text_chunks(files_text)
            # create vetore stores
            vetorestore = get_vectorstore(text_chunks)

        st.sidebar.info('Processing Complete', icon="✅")
         # create conversation chain
        st.session_state.conversation = get_conversation_chain(vetorestore,openai_api_key) #for openAI

        st.session_state.processComplete = True

    if  st.session_state.processComplete == True:
        user_question = st.chat_input("Ask Question about your files.")
        if user_question:
            handel_userinput(user_question)

# Function to get the input file and read the text from it.
def get_files_text(uploaded_files):
    text = ""
    for uploaded_file in uploaded_files:
        split_tup = os.path.splitext(uploaded_file.name)
        file_extension = split_tup[1]
        if file_extension == ".pdf":
            text += get_pdf_text(uploaded_file)
        elif file_extension == ".docx":
            text += get_docx_text(uploaded_file)
        else:
            text += get_csv_text(uploaded_file)
    return text

# Function to read PDF Files
def get_pdf_text(pdf):
    pdf_reader = PdfReader(pdf)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text

def get_docx_text(file):
    doc = docx.Document(file)
    allText = []
    for docpara in doc.paragraphs:
        allText.append(docpara.text)
    text = ' '.join(allText)
    return text

def get_csv_text(file):
    return "a"

def get_text_chunks(text):
    # spilit ito chuncks
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=900,
        chunk_overlap=100,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    # Using the hugging face embedding models
    embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
    # creating the Vectore Store using Facebook AI Semantic search
    knowledge_base = FAISS.from_texts(text_chunks,embeddings)
    return knowledge_base

def get_conversation_chain(vetorestore,openai_api_key):
    llm = ChatOpenAI(openai_api_key=openai_api_key, model_name = 'gpt-3.5-turbo',temperature=0)
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, skip_on_failure=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vetorestore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handel_userinput(user_question):
    with get_openai_callback() as cb:
        response = st.session_state.conversation({'question':user_question})
    st.session_state.chat_history = response['chat_history']

    # Layout of input/response containers
    response_container = st.container()

    with response_container:
        for i, messages in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                message(messages.content, is_user=True, key=str(i))
            else:
                message(messages.content, key=str(i))


if __name__ == '__main__':
    main()