Spaces:
Sleeping
Sleeping
File size: 4,582 Bytes
84faacb 81832da 84faacb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
import os
from PyPDF2 import PdfReader
import docx
from langchain.chat_models import ChatOpenAI
from dotenv import load_dotenv
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from streamlit_chat import message
from langchain.callbacks import get_openai_callback
def main():
load_dotenv()
st.set_page_config(page_title="DocumentGPT", page_icon=":books:")
st.header(":books: CHAT WITH YOUR DOCUMENTS")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
if "processComplete" not in st.session_state:
st.session_state.processComplete = None
with st.sidebar:
uploaded_files = st.file_uploader("**:books: Upload your files**",accept_multiple_files=True)
openai_api_key = st.text_input("**:key: OpenAI API Key**" , type="password")
process = st.button("**Process**")
if process:
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
with st.spinner("Processing"):
files_text = get_files_text(uploaded_files)
# get text chunks
text_chunks = get_text_chunks(files_text)
# create vetore stores
vetorestore = get_vectorstore(text_chunks)
st.sidebar.info('Processing Complete', icon="✅")
# create conversation chain
st.session_state.conversation = get_conversation_chain(vetorestore,openai_api_key) #for openAI
st.session_state.processComplete = True
if st.session_state.processComplete == True:
user_question = st.chat_input("Ask Question about your files.")
if user_question:
handel_userinput(user_question)
# Function to get the input file and read the text from it.
def get_files_text(uploaded_files):
text = ""
for uploaded_file in uploaded_files:
split_tup = os.path.splitext(uploaded_file.name)
file_extension = split_tup[1]
if file_extension == ".pdf":
text += get_pdf_text(uploaded_file)
elif file_extension == ".docx":
text += get_docx_text(uploaded_file)
else:
text += get_csv_text(uploaded_file)
return text
# Function to read PDF Files
def get_pdf_text(pdf):
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_docx_text(file):
doc = docx.Document(file)
allText = []
for docpara in doc.paragraphs:
allText.append(docpara.text)
text = ' '.join(allText)
return text
def get_csv_text(file):
return "a"
def get_text_chunks(text):
# spilit ito chuncks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=900,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# Using the hugging face embedding models
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# creating the Vectore Store using Facebook AI Semantic search
knowledge_base = FAISS.from_texts(text_chunks,embeddings)
return knowledge_base
def get_conversation_chain(vetorestore,openai_api_key):
llm = ChatOpenAI(openai_api_key=openai_api_key, model_name = 'gpt-3.5-turbo',temperature=0)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, skip_on_failure=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vetorestore.as_retriever(),
memory=memory
)
return conversation_chain
def handel_userinput(user_question):
with get_openai_callback() as cb:
response = st.session_state.conversation({'question':user_question})
st.session_state.chat_history = response['chat_history']
# Layout of input/response containers
response_container = st.container()
with response_container:
for i, messages in enumerate(st.session_state.chat_history):
if i % 2 == 0:
message(messages.content, is_user=True, key=str(i))
else:
message(messages.content, key=str(i))
if __name__ == '__main__':
main()
|