File size: 2,822 Bytes
1f130ae
46e2aed
 
412adf0
46e2aed
9a5dd5f
46e2aed
 
 
 
 
5cde790
46e2aed
1f130ae
46e2aed
4bec973
 
 
 
 
 
 
 
 
 
 
 
 
46e2aed
7ffdd20
1effd41
46e2aed
 
 
 
 
 
 
 
 
1f130ae
46e2aed
 
 
 
 
93e10cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import cv2
import numpy as np
import onnxruntime as ort
import streamlit as st
from PIL import Image

# Load the ONNX model
def load_model(model_path='onnx_model.onnx'):
    # Load the ONNX model
    model = ort.InferenceSession(model_path)
    return model

# Preprocess the image
def preprocess_image(image):
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)  # Convert to BGR (OpenCV format)
    
    # Resize the image to 48x48 as per the error message (model's expected input size)
    image_resized = cv2.resize(image, (48, 48))  # Resize to 48x48
    
    # Convert to grayscale if the model expects a single channel
    image_gray = cv2.cvtColor(image_resized, cv2.COLOR_BGR2GRAY)  # Convert to grayscale

    # If the model expects 3 channels, keep the image in RGB (3 channels)
    # image_resized = cv2.cvtColor(image_resized, cv2.COLOR_BGR2RGB)  # For RGB input
    
    # Add batch dimension
    image_input = np.expand_dims(image_gray, axis=0)  # Add batch dimension
    image_input = np.expand_dims(image_input, axis=0)  # Add channel dimension (for grayscale)
    image_input = image_input.astype(np.float32) / 255.0  # Normalize the image
    return image_input

# Map the raw output to emotions
def get_emotion_from_output(output):
    emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Neutral']
    # Get the index of the highest value in the output (i.e., predicted emotion)
    emotion_index = np.argmax(output)
    confidence = output[0][emotion_index]  # Confidence of the prediction
    emotion = emotion_labels[emotion_index]  # Corresponding emotion label
    return emotion, confidence

# Predict emotion using the ONNX model
def predict_emotion_onnx(model, image_input):
    # Get the input name and output name for the ONNX model
    input_name = model.get_inputs()[0].name
    output_name = model.get_outputs()[0].name
    # Run the model
    prediction = model.run([output_name], {input_name: image_input})
    return prediction[0]

# Streamlit UI
st.title("Emotion Detection")

# Upload an image
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Open and display the uploaded image
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_column_width=True)

    # Load model
    onnx_model = load_model()

    # Preprocess the image
    image_input = preprocess_image(image)

    # Get emotion prediction
    emotion_prediction = predict_emotion_onnx(onnx_model, image_input)

    # Get the emotion label and confidence
    emotion_label, confidence = get_emotion_from_output(emotion_prediction)

    # Display the predicted emotion and confidence
    st.write(f"Predicted Emotion: {emotion_label}")
    st.write(f"Confidence: {confidence:.2f}")