Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -44,4 +44,32 @@ def predict_emotion_onnx(model, image_input):
|
|
44 |
input_name = model.get_inputs()[0].name
|
45 |
output_name = model.get_outputs()[0].name
|
46 |
# Run the model
|
47 |
-
prediction = model.run([
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
input_name = model.get_inputs()[0].name
|
45 |
output_name = model.get_outputs()[0].name
|
46 |
# Run the model
|
47 |
+
prediction = model.run([output_name], {input_name: image_input})
|
48 |
+
return prediction[0]
|
49 |
+
|
50 |
+
# Streamlit UI
|
51 |
+
st.title("Emotion Detection")
|
52 |
+
|
53 |
+
# Upload an image
|
54 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
55 |
+
|
56 |
+
if uploaded_file is not None:
|
57 |
+
# Open and display the uploaded image
|
58 |
+
image = Image.open(uploaded_file)
|
59 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
60 |
+
|
61 |
+
# Load model
|
62 |
+
onnx_model = load_model()
|
63 |
+
|
64 |
+
# Preprocess the image
|
65 |
+
image_input = preprocess_image(image)
|
66 |
+
|
67 |
+
# Get emotion prediction
|
68 |
+
emotion_prediction = predict_emotion_onnx(onnx_model, image_input)
|
69 |
+
|
70 |
+
# Get the emotion label and confidence
|
71 |
+
emotion_label, confidence = get_emotion_from_output(emotion_prediction)
|
72 |
+
|
73 |
+
# Display the predicted emotion and confidence
|
74 |
+
st.write(f"Predicted Emotion: {emotion_label}")
|
75 |
+
st.write(f"Confidence: {confidence:.2f}")
|