|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
from groq import Groq |
|
from PIL import Image as PILImage |
|
import io |
|
import base64 |
|
import torch |
|
import warnings |
|
from typing import Tuple, List, Dict, Optional |
|
|
|
|
|
warnings.filterwarnings('ignore', category=FutureWarning) |
|
|
|
class RobustSafetyMonitor: |
|
def __init__(self): |
|
"""Initialize the robust safety detection tool with configuration.""" |
|
self.client = Groq() |
|
self.model_name = "llama-3.2-11b-vision-preview" |
|
self.max_image_size = (800, 800) |
|
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)] |
|
|
|
|
|
self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) |
|
|
|
|
|
self.yolo_model.cpu() |
|
self.yolo_model.eval() |
|
|
|
def preprocess_image(self, frame: np.ndarray) -> np.ndarray: |
|
"""Process image for analysis.""" |
|
if frame is None: |
|
raise ValueError("No image provided") |
|
|
|
if len(frame.shape) == 2: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) |
|
elif len(frame.shape) == 3 and frame.shape[2] == 4: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) |
|
|
|
return self.resize_image(frame) |
|
|
|
def resize_image(self, image: np.ndarray) -> np.ndarray: |
|
"""Resize image while maintaining aspect ratio.""" |
|
height, width = image.shape[:2] |
|
if height > self.max_image_size[1] or width > self.max_image_size[0]: |
|
aspect = width / height |
|
if width > height: |
|
new_width = self.max_image_size[0] |
|
new_height = int(new_width / aspect) |
|
else: |
|
new_height = self.max_image_size[1] |
|
new_width = int(new_height * aspect) |
|
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) |
|
return image |
|
|
|
def encode_image(self, frame: np.ndarray) -> str: |
|
"""Convert image to base64 encoding with proper formatting.""" |
|
try: |
|
frame_pil = PILImage.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
buffered = io.BytesIO() |
|
frame_pil.save(buffered, format="JPEG", quality=95) |
|
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
return f"data:image/jpeg;base64,{img_base64}" |
|
except Exception as e: |
|
raise ValueError(f"Error encoding image: {str(e)}") |
|
|
|
def detect_objects(self, frame: np.ndarray) -> Tuple[np.ndarray, Dict]: |
|
"""Detect objects using YOLOv5.""" |
|
try: |
|
with torch.no_grad(): |
|
results = self.yolo_model(frame) |
|
bbox_data = results.xyxy[0].cpu().numpy() |
|
labels = results.names |
|
return bbox_data, labels |
|
except Exception as e: |
|
raise ValueError(f"Error detecting objects: {str(e)}") |
|
|
|
def analyze_frame(self, frame: np.ndarray) -> Tuple[List[Dict], str]: |
|
"""Perform safety analysis on the frame using Llama Vision.""" |
|
if frame is None: |
|
return [], "No frame received" |
|
|
|
try: |
|
frame = self.preprocess_image(frame) |
|
image_base64 = self.encode_image(frame) |
|
|
|
completion = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": """Analyze this workplace image and identify any potential safety risks. |
|
List each risk on a new line starting with 'Risk:'. |
|
Format: Risk: [Object/Area] - [Description of hazard]""" |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": image_base64 |
|
} |
|
} |
|
] |
|
} |
|
], |
|
temperature=0.7, |
|
max_tokens=1024, |
|
stream=False |
|
) |
|
|
|
|
|
try: |
|
response = completion.choices[0].message.content |
|
except AttributeError: |
|
response = str(completion.choices[0].message) |
|
|
|
safety_issues = self.parse_safety_analysis(response) |
|
return safety_issues, response |
|
|
|
except Exception as e: |
|
print(f"Analysis error: {str(e)}") |
|
return [], f"Analysis Error: {str(e)}" |
|
|
|
def draw_bounding_boxes(self, image: np.ndarray, bboxes: np.ndarray, |
|
labels: Dict, safety_issues: List[Dict]) -> np.ndarray: |
|
"""Draw bounding boxes around objects based on safety issues.""" |
|
image_copy = image.copy() |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
font_scale = 0.5 |
|
thickness = 2 |
|
|
|
for idx, bbox in enumerate(bboxes): |
|
try: |
|
x1, y1, x2, y2, conf, class_id = bbox |
|
label = labels[int(class_id)] |
|
color = self.colors[idx % len(self.colors)] |
|
|
|
|
|
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) |
|
|
|
|
|
cv2.rectangle(image_copy, (x1, y1), (x2, y2), color, thickness) |
|
|
|
|
|
risk_found = False |
|
for safety_issue in safety_issues: |
|
if safety_issue.get('object', '').lower() in label.lower(): |
|
label_text = f"Risk: {safety_issue.get('description', '')}" |
|
y_pos = max(y1 - 10, 20) |
|
cv2.putText(image_copy, label_text, (x1, y_pos), font, |
|
font_scale, (0, 0, 255), thickness) |
|
risk_found = True |
|
break |
|
|
|
if not risk_found: |
|
label_text = f"{label} {conf:.2f}" |
|
y_pos = max(y1 - 10, 20) |
|
cv2.putText(image_copy, label_text, (x1, y_pos), font, |
|
font_scale, color, thickness) |
|
except Exception as e: |
|
print(f"Error drawing box: {str(e)}") |
|
continue |
|
|
|
return image_copy |
|
|
|
def process_frame(self, frame: np.ndarray) -> Tuple[Optional[np.ndarray], str]: |
|
"""Main processing pipeline for safety analysis.""" |
|
if frame is None: |
|
return None, "No image provided" |
|
|
|
try: |
|
|
|
bbox_data, labels = self.detect_objects(frame) |
|
|
|
|
|
safety_issues, analysis = self.analyze_frame(frame) |
|
|
|
|
|
annotated_frame = self.draw_bounding_boxes(frame, bbox_data, labels, safety_issues) |
|
|
|
return annotated_frame, analysis |
|
|
|
except Exception as e: |
|
print(f"Processing error: {str(e)}") |
|
return None, f"Error processing image: {str(e)}" |
|
|
|
def parse_safety_analysis(self, analysis: str) -> List[Dict]: |
|
"""Parse the safety analysis text into structured data.""" |
|
safety_issues = [] |
|
|
|
if not isinstance(analysis, str): |
|
return safety_issues |
|
|
|
for line in analysis.split('\n'): |
|
if "risk:" in line.lower(): |
|
try: |
|
|
|
parts = line.lower().split('risk:', 1)[1].strip() |
|
if '-' in parts: |
|
obj, desc = parts.split('-', 1) |
|
else: |
|
obj, desc = parts, parts |
|
|
|
safety_issues.append({ |
|
"object": obj.strip(), |
|
"description": desc.strip() |
|
}) |
|
except Exception as e: |
|
print(f"Error parsing line: {line}, Error: {str(e)}") |
|
continue |
|
|
|
return safety_issues |
|
|
|
|
|
def create_monitor_interface(): |
|
"""Create the Gradio interface for the safety monitoring system.""" |
|
monitor = RobustSafetyMonitor() |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Workplace Safety Analysis System") |
|
gr.Markdown("Powered by Groq LLaVA Vision and YOLOv5") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Upload Workplace Image", type="numpy") |
|
output_image = gr.Image(label="Safety Analysis Visualization") |
|
|
|
analysis_text = gr.Textbox(label="Detailed Safety Analysis", lines=5) |
|
|
|
def analyze_image(image): |
|
if image is None: |
|
return None, "Please upload an image" |
|
try: |
|
processed_frame, analysis = monitor.process_frame(image) |
|
return processed_frame, analysis |
|
except Exception as e: |
|
print(f"Analysis error: {str(e)}") |
|
return None, f"Error analyzing image: {str(e)}" |
|
|
|
input_image.upload( |
|
fn=analyze_image, |
|
inputs=input_image, |
|
outputs=[output_image, analysis_text] |
|
) |
|
|
|
gr.Markdown(""" |
|
## Instructions |
|
1. Upload a workplace image for safety analysis |
|
2. View detected hazards and their locations in the visualization |
|
3. Read the detailed safety analysis below the images |
|
|
|
## Features |
|
- Real-time object detection |
|
- AI-powered safety risk analysis |
|
- Visual risk highlighting |
|
- Detailed safety recommendations |
|
""") |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_monitor_interface() |
|
demo.launch(share=True) |