File size: 10,350 Bytes
7b04d4e 49a323c 7b04d4e 75c2b7c aca1712 d2c67f3 aca1712 d2c67f3 63920cb a5f647b 771e08a a5f647b 771e08a d2c67f3 771e08a aca1712 a5f647b 7e37c85 d2c67f3 771e08a d2c67f3 519704e d2c67f3 771e08a d2c67f3 771e08a d2c67f3 160a45b d2c67f3 a01cb2c d2c67f3 aca1712 d2c67f3 519704e d2c67f3 92928c5 519704e d2c67f3 519704e a5f647b d2c67f3 519704e d2c67f3 5f3406b 519704e 92928c5 a5f647b 519704e d2c67f3 7870fce 519704e d2c67f3 46e12d1 d2c67f3 519704e a5f647b aca1712 d2c67f3 a5f647b d2c67f3 9bf83e0 d2c67f3 519704e f6cffbc 519704e d2c67f3 aca1712 d2c67f3 7870fce d2c67f3 a5f647b f6cffbc 519704e f6cffbc d2c67f3 f6cffbc d2c67f3 f6cffbc d2c67f3 7870fce d2c67f3 7870fce d2c67f3 f6cffbc 46e12d1 a5f647b 771e08a d2c67f3 a5f647b 1cddd79 d2c67f3 7b04d4e 1cddd79 d2c67f3 1cddd79 b4f3ea6 b6ce847 d2c67f3 27eab0f d2c67f3 33fd6ad 7e37c85 b4f3ea6 1cddd79 7b04d4e bda20be d2c67f3 bda20be 1cddd79 771e08a d2c67f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
from PIL import Image as PILImage
import io
import base64
import torch
import warnings
from typing import Tuple, List, Dict, Optional
# Suppress the CUDA autocast warning
warnings.filterwarnings('ignore', category=FutureWarning)
class RobustSafetyMonitor:
def __init__(self):
"""Initialize the robust safety detection tool with configuration."""
self.client = Groq()
self.model_name = "llama-3.2-11b-vision-preview" # Updated to use the correct model
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
# Load YOLOv5 model for general object detection
self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Force CPU inference if CUDA is causing issues
self.yolo_model.cpu()
self.yolo_model.eval()
def preprocess_image(self, frame: np.ndarray) -> np.ndarray:
"""Process image for analysis."""
if frame is None:
raise ValueError("No image provided")
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
return self.resize_image(frame)
def resize_image(self, image: np.ndarray) -> np.ndarray:
"""Resize image while maintaining aspect ratio."""
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def encode_image(self, frame: np.ndarray) -> str:
"""Convert image to base64 encoding with proper formatting."""
try:
frame_pil = PILImage.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG", quality=95)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/jpeg;base64,{img_base64}"
except Exception as e:
raise ValueError(f"Error encoding image: {str(e)}")
def detect_objects(self, frame: np.ndarray) -> Tuple[np.ndarray, Dict]:
"""Detect objects using YOLOv5."""
try:
with torch.no_grad():
results = self.yolo_model(frame)
bbox_data = results.xyxy[0].cpu().numpy()
labels = results.names
return bbox_data, labels
except Exception as e:
raise ValueError(f"Error detecting objects: {str(e)}")
def analyze_frame(self, frame: np.ndarray) -> Tuple[List[Dict], str]:
"""Perform safety analysis on the frame using Llama Vision."""
if frame is None:
return [], "No frame received"
try:
frame = self.preprocess_image(frame)
image_base64 = self.encode_image(frame)
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this workplace image and identify any potential safety risks.
List each risk on a new line starting with 'Risk:'.
Format: Risk: [Object/Area] - [Description of hazard]"""
},
{
"type": "image_url",
"image_url": {
"url": image_base64
}
}
]
}
],
temperature=0.7,
max_tokens=1024,
stream=False
)
# Get the response content safely
try:
response = completion.choices[0].message.content
except AttributeError:
response = str(completion.choices[0].message)
safety_issues = self.parse_safety_analysis(response)
return safety_issues, response
except Exception as e:
print(f"Analysis error: {str(e)}")
return [], f"Analysis Error: {str(e)}"
def draw_bounding_boxes(self, image: np.ndarray, bboxes: np.ndarray,
labels: Dict, safety_issues: List[Dict]) -> np.ndarray:
"""Draw bounding boxes around objects based on safety issues."""
image_copy = image.copy()
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
for idx, bbox in enumerate(bboxes):
try:
x1, y1, x2, y2, conf, class_id = bbox
label = labels[int(class_id)]
color = self.colors[idx % len(self.colors)]
# Convert coordinates to integers
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
# Draw bounding box
cv2.rectangle(image_copy, (x1, y1), (x2, y2), color, thickness)
# Check if object is associated with any safety issues
risk_found = False
for safety_issue in safety_issues:
if safety_issue.get('object', '').lower() in label.lower():
label_text = f"Risk: {safety_issue.get('description', '')}"
y_pos = max(y1 - 10, 20)
cv2.putText(image_copy, label_text, (x1, y_pos), font,
font_scale, (0, 0, 255), thickness)
risk_found = True
break
if not risk_found:
label_text = f"{label} {conf:.2f}"
y_pos = max(y1 - 10, 20)
cv2.putText(image_copy, label_text, (x1, y_pos), font,
font_scale, color, thickness)
except Exception as e:
print(f"Error drawing box: {str(e)}")
continue
return image_copy
def process_frame(self, frame: np.ndarray) -> Tuple[Optional[np.ndarray], str]:
"""Main processing pipeline for safety analysis."""
if frame is None:
return None, "No image provided"
try:
# Detect objects
bbox_data, labels = self.detect_objects(frame)
# Get safety analysis
safety_issues, analysis = self.analyze_frame(frame)
# Draw annotations
annotated_frame = self.draw_bounding_boxes(frame, bbox_data, labels, safety_issues)
return annotated_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
def parse_safety_analysis(self, analysis: str) -> List[Dict]:
"""Parse the safety analysis text into structured data."""
safety_issues = []
if not isinstance(analysis, str):
return safety_issues
for line in analysis.split('\n'):
if "risk:" in line.lower():
try:
# Extract object and description
parts = line.lower().split('risk:', 1)[1].strip()
if '-' in parts:
obj, desc = parts.split('-', 1)
else:
obj, desc = parts, parts
safety_issues.append({
"object": obj.strip(),
"description": desc.strip()
})
except Exception as e:
print(f"Error parsing line: {line}, Error: {str(e)}")
continue
return safety_issues
def create_monitor_interface():
"""Create the Gradio interface for the safety monitoring system."""
monitor = RobustSafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Workplace Safety Analysis System")
gr.Markdown("Powered by Groq LLaVA Vision and YOLOv5")
with gr.Row():
input_image = gr.Image(label="Upload Workplace Image", type="numpy")
output_image = gr.Image(label="Safety Analysis Visualization")
analysis_text = gr.Textbox(label="Detailed Safety Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "Please upload an image"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Analysis error: {str(e)}")
return None, f"Error analyzing image: {str(e)}"
input_image.upload(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions
1. Upload a workplace image for safety analysis
2. View detected hazards and their locations in the visualization
3. Read the detailed safety analysis below the images
## Features
- Real-time object detection
- AI-powered safety risk analysis
- Visual risk highlighting
- Detailed safety recommendations
""")
return demo
if __name__ == "__main__":
demo = create_monitor_interface()
demo.launch(share=True) |