|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
from groq import Groq |
|
import time |
|
from PIL import Image as PILImage |
|
import io |
|
import os |
|
import base64 |
|
import torch |
|
|
|
|
|
class SafetyMonitor: |
|
def __init__(self): |
|
"""Initialize Safety Monitor with configuration.""" |
|
self.client = Groq() |
|
self.model_name = "llama-3.2-90b-vision-preview" |
|
self.max_image_size = (800, 800) |
|
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)] |
|
|
|
|
|
self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s') |
|
|
|
def preprocess_image(self, frame): |
|
"""Process image for analysis.""" |
|
if len(frame.shape) == 2: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) |
|
elif len(frame.shape) == 3 and frame.shape[2] == 4: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) |
|
|
|
return self.resize_image(frame) |
|
|
|
def resize_image(self, image): |
|
"""Resize image while maintaining aspect ratio.""" |
|
height, width = image.shape[:2] |
|
if height > self.max_image_size[1] or width > self.max_image_size[0]: |
|
aspect = width / height |
|
if width > height: |
|
new_width = self.max_image_size[0] |
|
new_height = int(new_width / aspect) |
|
else: |
|
new_height = self.max_image_size[1] |
|
new_width = int(new_height * aspect) |
|
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) |
|
return image |
|
|
|
def encode_image(self, frame): |
|
"""Convert image to base64 encoding.""" |
|
frame_pil = PILImage.fromarray(frame) |
|
buffered = io.BytesIO() |
|
frame_pil.save(buffered, format="JPEG", quality=95) |
|
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
return f"data:image/jpeg;base64,{img_base64}" |
|
|
|
def detect_objects(self, frame): |
|
"""Detect objects using YOLOv5.""" |
|
results = self.yolo_model(frame) |
|
|
|
bbox_data = results.xyxy[0].numpy() |
|
labels = results.names |
|
return bbox_data, labels |
|
|
|
def analyze_frame(self, frame): |
|
"""Perform safety analysis on the frame.""" |
|
if frame is None: |
|
return "No frame received", {} |
|
|
|
frame = self.preprocess_image(frame) |
|
image_url = self.encode_image(frame) |
|
|
|
try: |
|
completion = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": "Identify and list safety concerns in this workplace image. For each issue found, include its location and specific safety concern. Look for hazards related to PPE, ergonomics, equipment, environment, and work procedures." |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": image_url |
|
} |
|
} |
|
] |
|
} |
|
], |
|
temperature=0.7, |
|
max_tokens=500, |
|
stream=False |
|
) |
|
return completion.choices[0].message.content, {} |
|
except Exception as e: |
|
print(f"Analysis error: {str(e)}") |
|
return f"Analysis Error: {str(e)}", {} |
|
|
|
def draw_bounding_boxes(self, image, bboxes, labels): |
|
"""Draw bounding boxes around detected objects.""" |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
font_scale = 0.5 |
|
thickness = 2 |
|
for idx, bbox in enumerate(bboxes): |
|
x1, y1, x2, y2, conf, class_id = bbox |
|
label = labels[int(class_id)] |
|
color = self.colors[idx % len(self.colors)] |
|
|
|
|
|
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness) |
|
|
|
|
|
label_text = f"{label} {conf:.2f}" |
|
cv2.putText(image, label_text, (int(x1), int(y1) - 10), font, font_scale, color, thickness) |
|
|
|
return image |
|
|
|
def process_frame(self, frame): |
|
"""Main processing pipeline for safety analysis.""" |
|
if frame is None: |
|
return None, "No image provided" |
|
|
|
try: |
|
|
|
bbox_data, labels = self.detect_objects(frame) |
|
frame_with_boxes = self.draw_bounding_boxes(frame, bbox_data, labels) |
|
|
|
|
|
analysis, _ = self.analyze_frame(frame) |
|
return frame_with_boxes, analysis |
|
|
|
except Exception as e: |
|
print(f"Processing error: {str(e)}") |
|
return None, f"Error processing image: {str(e)}" |
|
|
|
def create_monitor_interface(): |
|
monitor = SafetyMonitor() |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Upload Image") |
|
output_image = gr.Image(label="Safety Analysis") |
|
|
|
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) |
|
|
|
def analyze_image(image): |
|
if image is None: |
|
return None, "No image provided" |
|
try: |
|
processed_frame, analysis = monitor.process_frame(image) |
|
return processed_frame, analysis |
|
except Exception as e: |
|
print(f"Processing error: {str(e)}") |
|
return None, f"Error processing image: {str(e)}" |
|
|
|
input_image.change( |
|
fn=analyze_image, |
|
inputs=input_image, |
|
outputs=[output_image, analysis_text] |
|
) |
|
|
|
gr.Markdown(""" |
|
## Instructions: |
|
1. Upload any workplace/safety-related image |
|
2. View identified hazards and their locations |
|
3. Read detailed analysis of safety concerns |
|
""") |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_monitor_interface() |
|
demo.launch() |
|
|