File size: 6,520 Bytes
7b04d4e
 
 
 
 
49a323c
7b04d4e
33fd6ad
75c2b7c
aca1712
 
a01cb2c
771e08a
 
519704e
771e08a
 
 
 
aca1712
 
 
771e08a
 
519704e
771e08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01cb2c
 
 
 
 
 
 
 
aca1712
 
 
 
 
 
 
18cd948
519704e
 
 
 
92928c5
519704e
 
aca1712
519704e
 
 
 
 
 
 
 
 
92928c5
519704e
 
 
 
 
5f3406b
519704e
 
 
 
92928c5
519704e
 
 
 
 
 
 
46e12d1
aca1712
 
519704e
 
 
aca1712
 
 
519704e
bda20be
aca1712
 
46e12d1
aca1712
 
 
519704e
 
9bf83e0
519704e
 
 
 
 
 
aca1712
 
 
 
 
519704e
aca1712
519704e
 
 
 
46e12d1
771e08a
1cddd79
 
 
7e6153d
7b04d4e
1cddd79
b4f3ea6
46e12d1
1cddd79
18cd948
7b04d4e
b4f3ea6
b6ce847
49a323c
27eab0f
 
 
 
9fd1d46
27eab0f
33fd6ad
b4f3ea6
 
 
 
1cddd79
7b04d4e
bda20be
 
46e12d1
771e08a
 
bda20be
 
1cddd79
 
771e08a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
import torch


class SafetyMonitor:
    def __init__(self):
        """Initialize Safety Monitor with configuration."""
        self.client = Groq()
        self.model_name = "llama-3.2-90b-vision-preview"
        self.max_image_size = (800, 800)
        self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
        
        # Load YOLOv5 model for object detection
        self.yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

    def preprocess_image(self, frame):
        """Process image for analysis."""
        if len(frame.shape) == 2:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        elif len(frame.shape) == 3 and frame.shape[2] == 4:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
        
        return self.resize_image(frame)

    def resize_image(self, image):
        """Resize image while maintaining aspect ratio."""
        height, width = image.shape[:2]
        if height > self.max_image_size[1] or width > self.max_image_size[0]:
            aspect = width / height
            if width > height:
                new_width = self.max_image_size[0]
                new_height = int(new_width / aspect)
            else:
                new_height = self.max_image_size[1]
                new_width = int(new_height * aspect)
            return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
        return image

    def encode_image(self, frame):
        """Convert image to base64 encoding."""
        frame_pil = PILImage.fromarray(frame)
        buffered = io.BytesIO()
        frame_pil.save(buffered, format="JPEG", quality=95)
        img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return f"data:image/jpeg;base64,{img_base64}"

    def detect_objects(self, frame):
        """Detect objects using YOLOv5."""
        results = self.yolo_model(frame)
        # Extract bounding boxes, class labels, and confidence scores
        bbox_data = results.xyxy[0].numpy()  # Bounding box coordinates
        labels = results.names  # Class names
        return bbox_data, labels

    def analyze_frame(self, frame):
        """Perform safety analysis on the frame."""
        if frame is None:
            return "No frame received", {}
    
        frame = self.preprocess_image(frame)
        image_url = self.encode_image(frame)

        try:
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": "Identify and list safety concerns in this workplace image. For each issue found, include its location and specific safety concern. Look for hazards related to PPE, ergonomics, equipment, environment, and work procedures."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_url
                                }
                            }
                        ]
                    }
                ],
                temperature=0.7,
                max_tokens=500,
                stream=False
            )
            return completion.choices[0].message.content, {}
        except Exception as e:
            print(f"Analysis error: {str(e)}")
            return f"Analysis Error: {str(e)}", {}

    def draw_bounding_boxes(self, image, bboxes, labels):
        """Draw bounding boxes around detected objects."""
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = 0.5
        thickness = 2
        for idx, bbox in enumerate(bboxes):
            x1, y1, x2, y2, conf, class_id = bbox
            label = labels[int(class_id)]
            color = self.colors[idx % len(self.colors)]
            
            # Draw bounding box
            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness)
            
            # Draw label
            label_text = f"{label} {conf:.2f}"
            cv2.putText(image, label_text, (int(x1), int(y1) - 10), font, font_scale, color, thickness)
        
        return image

    def process_frame(self, frame):
        """Main processing pipeline for safety analysis."""
        if frame is None:
            return None, "No image provided"
        
        try:
            # Detect objects in the image using YOLO
            bbox_data, labels = self.detect_objects(frame)
            frame_with_boxes = self.draw_bounding_boxes(frame, bbox_data, labels)

            # Get analysis from Groq's model
            analysis, _ = self.analyze_frame(frame)
            return frame_with_boxes, analysis
            
        except Exception as e:
            print(f"Processing error: {str(e)}")
            return None, f"Error processing image: {str(e)}"

def create_monitor_interface():
    monitor = SafetyMonitor()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
        
        with gr.Row():
            input_image = gr.Image(label="Upload Image")
            output_image = gr.Image(label="Safety Analysis")
        
        analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
            
        def analyze_image(image):
            if image is None:
                return None, "No image provided"
            try:
                processed_frame, analysis = monitor.process_frame(image)
                return processed_frame, analysis
            except Exception as e:
                print(f"Processing error: {str(e)}")
                return None, f"Error processing image: {str(e)}"
            
        input_image.change(
            fn=analyze_image,
            inputs=input_image,
            outputs=[output_image, analysis_text]
        )

        gr.Markdown("""
        ## Instructions:
        1. Upload any workplace/safety-related image
        2. View identified hazards and their locations
        3. Read detailed analysis of safety concerns
        """)

    return demo

if __name__ == "__main__":
    demo = create_monitor_interface()
    demo.launch()