capradeepgujaran's picture
Update app.py
8ad7e0c verified
raw
history blame
12.1 kB
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
import faiss
import pickle
from typing import List, Dict, Tuple
import logging
import gradio as gr
import tempfile
import os
import shutil
from tqdm import tqdm
import torch.nn as nn
import math
from concurrent.futures import ThreadPoolExecutor
import numpy as np
class VideoRAGTool:
def __init__(self, clip_model_name: str = "openai/clip-vit-base-patch32",
blip_model_name: str = "Salesforce/blip-image-captioning-base"):
"""Initialize with performance optimizations."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize models with optimization flags
self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
self.blip_processor = BlipProcessor.from_pretrained(blip_model_name)
self.blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name).to(self.device)
# Enable eval mode for inference
self.clip_model.eval()
self.blip_model.eval()
# Batch processing settings
self.batch_size = 8 # Adjust based on your GPU memory
self.frame_index = None
self.frame_data = []
self.logger = self._setup_logger()
@torch.no_grad() # Disable gradient computation for inference
def generate_caption(self, image: Image.Image) -> str:
"""Optimized caption generation."""
inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
out = self.blip_model.generate(**inputs, max_length=30, num_beams=2)
return self.blip_processor.decode(out[0], skip_special_tokens=True)
def get_video_info(self, video_path: str) -> Tuple[int, float]:
"""Get video frame count and FPS."""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return total_frames, fps
def preprocess_frame(self, frame: np.ndarray, target_size: Tuple[int, int] = (224, 224)) -> Image.Image:
"""Preprocess frame with resizing for efficiency."""
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame_rgb)
return image.resize(target_size, Image.LANCZOS)
@torch.no_grad()
def process_batch(self, frames: List[Image.Image]) -> Tuple[np.ndarray, List[str]]:
"""Process a batch of frames efficiently."""
# CLIP processing
clip_inputs = self.clip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
image_features = self.clip_model.get_image_features(**clip_inputs)
# BLIP processing
captions = []
blip_inputs = self.blip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
out = self.blip_model.generate(**blip_inputs, max_length=30, num_beams=2)
for o in out:
caption = self.blip_processor.decode(o, skip_special_tokens=True)
captions.append(caption)
return image_features.cpu().numpy(), captions
def process_video(self, video_path: str, frame_interval: int = 30) -> None:
"""Optimized video processing with batching and progress tracking."""
self.logger.info(f"Processing video: {video_path}")
total_frames, fps = self.get_video_info(video_path)
cap = cv2.VideoCapture(video_path)
# Calculate total batches for progress bar
frames_to_process = total_frames // frame_interval
total_batches = math.ceil(frames_to_process / self.batch_size)
current_batch = []
features_list = []
frame_count = 0
with tqdm(total=frames_to_process, desc="Processing frames") as pbar:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
# Preprocess frame
processed_frame = self.preprocess_frame(frame)
current_batch.append(processed_frame)
# Process batch when it reaches batch_size
if len(current_batch) == self.batch_size:
batch_features, batch_captions = self.process_batch(current_batch)
# Store results
for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
batch_frame_number = frame_count - (self.batch_size - i - 1) * frame_interval
self.frame_data.append({
'frame_number': batch_frame_number,
'timestamp': batch_frame_number / fps,
'caption': caption
})
features_list.append(features)
current_batch = []
pbar.update(self.batch_size)
frame_count += 1
# Process remaining frames
if current_batch:
batch_features, batch_captions = self.process_batch(current_batch)
for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
batch_frame_number = frame_count - (len(current_batch) - i - 1) * frame_interval
self.frame_data.append({
'frame_number': batch_frame_number,
'timestamp': batch_frame_number / fps,
'caption': caption
})
features_list.append(features)
cap.release()
if not features_list:
raise ValueError("No frames were processed from the video")
# Create FAISS index
features_array = np.vstack(features_list)
self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
self.frame_index.add(features_array)
self.logger.info(f"Processed {len(self.frame_data)} frames from video")
def query_video(self, query_text: str, k: int = 5) -> List[Dict]:
"""Query the video using natural language and return relevant frames."""
self.logger.info(f"Processing query: {query_text}")
inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
text_features = self.clip_model.get_text_features(**inputs)
distances, indices = self.frame_index.search(
text_features.cpu().detach().numpy(),
k
)
results = []
for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
frame_info = self.frame_data[idx].copy()
frame_info['relevance_score'] = float(1 / (1 + distance))
results.append(frame_info)
return results
class VideoRAGApp:
def __init__(self):
self.rag_tool = VideoRAGTool()
self.current_video_path = None
self.processed = False
self.temp_dir = tempfile.mkdtemp()
def __del__(self):
"""Cleanup temporary files on deletion"""
if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
def process_video(self, video_file):
"""Process uploaded video and return status message"""
try:
if video_file is None:
return "Please upload a video first."
video_path = video_file.name
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
shutil.copy2(video_path, temp_video_path)
self.current_video_path = temp_video_path
self.rag_tool.process_video(self.current_video_path)
self.processed = True
return "Video processed successfully! You can now ask questions about the video."
except Exception as e:
self.processed = False
return f"Error processing video: {str(e)}"
def query_video(self, query_text):
"""Query the video and return relevant frames with descriptions"""
if not self.processed:
return None, "Please process a video first."
try:
results = self.rag_tool.query_video(query_text, k=4)
frames = []
descriptions = []
cap = cv2.VideoCapture(self.current_video_path)
for result in results:
frame_number = result['frame_number']
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
description = f"Timestamp: {result['timestamp']:.2f}s\n"
description += f"Scene Description: {result['caption']}\n"
description += f"Relevance Score: {result['relevance_score']:.2f}"
descriptions.append(description)
cap.release()
# Combine all descriptions with frame numbers
combined_description = "\n\nFrame Analysis:\n\n"
for i, desc in enumerate(descriptions, 1):
combined_description += f"Frame {i}:\n{desc}\n\n"
return frames, combined_description
except Exception as e:
return None, f"Error querying video: {str(e)}"
def create_interface(self):
"""Create and return Gradio interface"""
with gr.Blocks(title="Video Chat RAG") as interface:
gr.Markdown("# Video Chat RAG")
gr.Markdown("Upload a video and ask questions about its content!")
with gr.Row():
video_input = gr.File(
label="Upload Video",
file_types=["video"],
)
process_button = gr.Button("Process Video")
status_output = gr.Textbox(
label="Status",
interactive=False
)
with gr.Row():
query_input = gr.Textbox(
label="Ask about the video",
placeholder="What's happening in the video?"
)
query_button = gr.Button("Search")
with gr.Row():
gallery = gr.Gallery(
label="Retrieved Frames",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
height="auto"
)
descriptions = gr.Textbox(
label="Scene Descriptions",
interactive=False,
lines=10
)
process_button.click(
fn=self.process_video,
inputs=[video_input],
outputs=[status_output]
)
query_button.click(
fn=self.query_video,
inputs=[query_input],
outputs=[gallery, descriptions]
)
return interface
# Initialize and create the interface
app = VideoRAGApp()
interface = app.create_interface()
# Launch the app
if __name__ == "__main__":
interface.launch()