File size: 4,278 Bytes
f5fbd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from video_rag_tool import VideoRAGTool
import tempfile
import os
from PIL import Image
import cv2
import numpy as np
import torch

class VideoRAGApp:
    def __init__(self):
        self.rag_tool = VideoRAGTool()
        self.current_video_path = None
        self.processed = False

    def process_video(self, video_file):
        """Process uploaded video and return status message"""
        if video_file is None:
            return "Please upload a video first."
        
        # Save uploaded video to temporary file
        temp_dir = tempfile.mkdtemp()
        temp_path = os.path.join(temp_dir, "uploaded_video.mp4")
        
        with open(temp_path, "wb") as f:
            f.write(video_file)
        
        self.current_video_path = temp_path
        
        try:
            self.rag_tool.process_video(temp_path)
            self.processed = True
            return "Video processed successfully! You can now ask questions about the video."
        except Exception as e:
            return f"Error processing video: {str(e)}"

    def query_video(self, query_text):
        """Query the video and return relevant frames with descriptions"""
        if not self.processed:
            return "Please process a video first."
        
        try:
            results = self.rag_tool.query_video(query_text, k=4)
            
            # Extract frames for display
            frames = []
            captions = []
            
            cap = cv2.VideoCapture(self.current_video_path)
            
            for result in results:
                frame_number = result['frame_number']
                cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
                ret, frame = cap.read()
                
                if ret:
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frames.append(Image.fromarray(frame_rgb))
                    
                    caption = f"Timestamp: {result['timestamp']:.2f}s\n"
                    caption += f"Relevance: {result['relevance_score']:.2f}"
                    captions.append(caption)
            
            cap.release()
            
            return frames, captions
            
        except Exception as e:
            return f"Error querying video: {str(e)}"

    def create_interface(self):
        """Create and return Gradio interface"""
        with gr.Blocks(title="Video Chat RAG") as interface:
            gr.Markdown("# Video Chat RAG")
            gr.Markdown("Upload a video and ask questions about its content!")
            
            with gr.Row():
                video_input = gr.File(
                    label="Upload Video",
                    file_types=["video"],
                )
                process_button = gr.Button("Process Video")
            
            status_output = gr.Textbox(
                label="Status",
                interactive=False
            )
            
            with gr.Row():
                query_input = gr.Textbox(
                    label="Ask about the video",
                    placeholder="What's happening in the video?"
                )
                query_button = gr.Button("Search")
            
            with gr.Row():
                gallery = gr.Gallery(
                    label="Retrieved Frames",
                    show_label=True,
                    elem_id="gallery",
                    columns=[2],
                    rows=[2],
                    height="auto"
                )
                
            captions = gr.Textbox(
                label="Frame Details",
                interactive=False
            )
            
            # Set up event handlers
            process_button.click(
                fn=self.process_video,
                inputs=[video_input],
                outputs=[status_output]
            )
            
            query_button.click(
                fn=self.query_video,
                inputs=[query_input],
                outputs=[gallery, captions]
            )
        
        return interface

# For Hugging Face Spaces deployment
app = VideoRAGApp()
interface = app.create_interface()

# Launch the app (for local testing)
if __name__ == "__main__":
    interface.launch()