Spaces:
Sleeping
Sleeping
File size: 6,473 Bytes
3941168 3ac47d5 c17af4e 3d6517f 3ac47d5 c17af4e 3d6517f c17af4e 5064436 c17af4e 6d21a48 c17af4e 6d21a48 c17af4e 6d21a48 c17af4e e2a2d53 3ac47d5 c17af4e 3ac47d5 3d6517f c17af4e 6d21a48 c17af4e 6d21a48 3d6517f 6d21a48 3d6517f 6d21a48 c17af4e 6d21a48 c17af4e 3ac47d5 c17af4e 3d6517f c17af4e 3ac47d5 c17af4e 3ac47d5 6d21a48 5d8ad15 3d6517f 5d8ad15 c17af4e 3ac47d5 c17af4e 3ac47d5 5d8ad15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import warnings
warnings.simplefilter("ignore", category=FutureWarning)
import os
import streamlit as st
from neo4j import GraphDatabase
from huggingface_hub import InferenceClient
from langchain_community.vectorstores import Neo4jVector
from transformers import AutoTokenizer, AutoModel
import torch
# Hugging Face API Setup
API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
client = InferenceClient(api_key=API_TOKEN, )
# Driver neo4j
driver = GraphDatabase.driver(
os.environ['NEO4J_URI'],
auth=(os.environ['NEO4J_USERNAME'], os.environ['NEO4J_PASSWORD'])
)
# Custom Embedding Class
class CustomHuggingFaceEmbeddings:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def embed_text(self, text):
try:
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
except Exception as e:
print(f"Error during tokenization: {e}")
return []
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
def embed_query(self, text):
return self.embed_text(text)
def embed_documents(self, text):
return self.embed_text(text)
# Function to set up the Neo4j Vector Index
@st.cache_resource
def setup_vector_index():
return Neo4jVector.from_existing_graph(
CustomHuggingFaceEmbeddings(),
url=os.environ['NEO4J_URI'],
username=os.environ['NEO4J_USERNAME'],
password=os.environ['NEO4J_PASSWORD'],
index_name='articles',
node_label="Article",
text_node_properties=['name', 'abstract'],
embedding_node_property='embedding',
)
# Query Mistral
def query_from_mistral(context: str, user_input: str):
messages = [
{"role": "system", "content": f"Use the following context to answer the query:\n{context}"},
{"role": "user", "content": user_input},
]
completion = client.chat.completions.create(
model=MISTRAL_MODEL_NAME,
messages=messages,
max_tokens=500,
)
return completion.choices[0].message["content"]
# Find keywords
def query_article_keywords(name):
with driver.session() as session:
query = """
MATCH (a:Article)-[:CONTAIN]->(k:Keyword)
WHERE a.name = $name
RETURN k
"""
result = session.run(query, name=name)
return [record["k"] for record in result]
# extract data from retriever response
def extract_data(documents):
result = []
for doc in documents:
publication_date = doc.metadata.get('date_publication', "N/A")
page_content = doc.page_content.strip().split("\n")
title = "N/A"
abstract = "N/A"
for line in page_content:
if line.lower().startswith("name:"):
title = line[len("name:"):].strip()
elif line.lower().startswith("abstract:"):
abstract = line[len("abstract:"):].strip()
keywords = query_article_keywords(title)
keywords = [dict(node)['text'] for node in keywords]
doc_data = {
"Publication Date": publication_date,
"Title": title,
"Abstract": abstract,
"keywords": ','.join(keywords)
}
result.append(doc_data)
return result
# Main Streamlit Application
def main():
st.set_page_config(page_title="Vector Chat with Mistral", layout="centered")
# App description and features
st.title("🤖 RAG with Mistral")
st.markdown("""
## Description:
Chat with **Mistral-7B-Instruct** using context retrieved from a **Neo4j** vector index. This app allows you to ask questions, and the assistant will provide real-time, context-driven answers by querying relevant articles and their keywords from the database.
""")
st.image(image="image.jpg", caption="Neo4j")
st.markdown("""
## Key Features:
- **Real-time context search** from a Neo4j vector index.
- **Integration with Mistral-7B-Instruct model** for natural language processing.
- **Keyword extraction** from relevant articles for enhanced context-based responses.
## GitHub Repository:
You can find the source code and more information about this app on GitHub: [GitHub Repository Link](https://github.com/yourusername/your-repository-name)
""")
# Initialize the vector index
vector_index = setup_vector_index()
if "messages" not in st.session_state:
st.session_state.messages = []
with st.form(key="chat_form", clear_on_submit=True):
user_input = st.text_input("You:", "")
submit = st.form_submit_button("Send")
if submit and user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner("Fetching response..."):
try:
context_results = vector_index.similarity_search(user_input, k=5)
if not context_results:
st.warning("No relevant context found. Please refine your query.")
response = "I'm sorry, I couldn't find any relevant information to answer your question."
else:
data_dict = extract_data(context_results)
# convert to string
context = '\n'.join([
f"Title: {doc['Title']}\n"
f"Abstract: {doc['Abstract']}\n"
f"Publication Date: {doc['Publication Date']}\n"
f"Keywords: {doc['keywords']}"
for doc in data_dict
])
response = query_from_mistral(context.strip(), user_input)
st.session_state.messages.append({"role": "bot", "content": response})
except Exception as e:
st.error(f"Error: {e}")
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
st.markdown(f"**You:** {message['content']}")
elif message["role"] == "bot":
st.markdown(f"**Bot:** {message['content']}")
if __name__ == "__main__":
main() |