File size: 1,608 Bytes
d14fbdf
 
 
 
 
 
 
 
 
 
 
 
80af471
d14fbdf
80af471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
title: BoneAgePrediction
emoji: 🦀
colorFrom: red
colorTo: red
sdk: gradio
sdk_version: 5.34.0
app_file: app.py
pinned: false
license: mit
short_description: 🩺 Bone Age Prediction Gradio App
---
# 🩺 Bone Age Prediction Gradio App

This Hugging Face Space provides an interactive demo for bone age estimation from hand X-ray images, based on the [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m) deep learning model (ResNet152, finetuned on the RSNA Pediatric Bone Age dataset).

## 🚀 What does this app do?

- **Upload a hand X-ray** (PNG/JPG).
- **Select the patient's gender** (Male/Female).
- **Get an instant prediction** of bone age in months (and years/months format) using a state-of-the-art neural network.

## 🧠 Model Details

- **Architecture:** ResNet152 + custom head (≈80M parameters)
- **Input:** 256x256 hand X-ray image & gender
- **Output:** Bone age (months)
- **Training Data:** [RSNA Bone Age Challenge](https://www.kaggle.com/datasets/kmader/rsna-bone-age)
- **Model Card:** [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m)

## 🌟 How to use

1. Upload a clear hand X-ray image (preferably as PNG).
2. Select the appropriate gender.
3. Press "Submit" to get the predicted bone age.

> **Note:** This app is for educational and research purposes only. Not for clinical use.

## 🏷️ Citation

If you use this demo or model, please cite the [RSNA Bone Age dataset](https://www.kaggle.com/datasets/kmader/rsna-bone-age) and this Hugging Face Space/model.

---

Built with ❤️ using Gradio and Hugging Face Spaces.