Spaces:
Sleeping
Sleeping
AdilzhanB
commited on
Commit
·
80af471
1
Parent(s):
d14fbdf
App change
Browse files- README.md +32 -1
- app.py +86 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -10,5 +10,36 @@ pinned: false
|
|
10 |
license: mit
|
11 |
short_description: 🩺 Bone Age Prediction Gradio App
|
12 |
---
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
short_description: 🩺 Bone Age Prediction Gradio App
|
12 |
---
|
13 |
+
# 🩺 Bone Age Prediction Gradio App
|
14 |
|
15 |
+
This Hugging Face Space provides an interactive demo for bone age estimation from hand X-ray images, based on the [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m) deep learning model (ResNet152, finetuned on the RSNA Pediatric Bone Age dataset).
|
16 |
+
|
17 |
+
## 🚀 What does this app do?
|
18 |
+
|
19 |
+
- **Upload a hand X-ray** (PNG/JPG).
|
20 |
+
- **Select the patient's gender** (Male/Female).
|
21 |
+
- **Get an instant prediction** of bone age in months (and years/months format) using a state-of-the-art neural network.
|
22 |
+
|
23 |
+
## 🧠 Model Details
|
24 |
+
|
25 |
+
- **Architecture:** ResNet152 + custom head (≈80M parameters)
|
26 |
+
- **Input:** 256x256 hand X-ray image & gender
|
27 |
+
- **Output:** Bone age (months)
|
28 |
+
- **Training Data:** [RSNA Bone Age Challenge](https://www.kaggle.com/datasets/kmader/rsna-bone-age)
|
29 |
+
- **Model Card:** [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m)
|
30 |
+
|
31 |
+
## 🌟 How to use
|
32 |
+
|
33 |
+
1. Upload a clear hand X-ray image (preferably as PNG).
|
34 |
+
2. Select the appropriate gender.
|
35 |
+
3. Press "Submit" to get the predicted bone age.
|
36 |
+
|
37 |
+
> **Note:** This app is for educational and research purposes only. Not for clinical use.
|
38 |
+
|
39 |
+
## 🏷️ Citation
|
40 |
+
|
41 |
+
If you use this demo or model, please cite the [RSNA Bone Age dataset](https://www.kaggle.com/datasets/kmader/rsna-bone-age) and this Hugging Face Space/model.
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
Built with ❤️ using Gradio and Hugging Face Spaces.
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
from torchvision import transforms
|
8 |
+
import onnxruntime as ort
|
9 |
+
|
10 |
+
# ======================
|
11 |
+
# Model & Preprocessing
|
12 |
+
# ======================
|
13 |
+
MODEL_ONNX_URL = "https://huggingface.co/Adilbai/bone-age-resnet-80m/resolve/main/resnet_bone_age_80m.onnx"
|
14 |
+
|
15 |
+
def download_model(url, filename):
|
16 |
+
if not os.path.exists(filename):
|
17 |
+
print(f"Downloading model from {url}")
|
18 |
+
r = requests.get(url)
|
19 |
+
with open(filename, "wb") as f:
|
20 |
+
f.write(r.content)
|
21 |
+
|
22 |
+
import os
|
23 |
+
MODEL_PATH = "resnet_bone_age_80m.onnx"
|
24 |
+
download_model(MODEL_ONNX_URL, MODEL_PATH)
|
25 |
+
|
26 |
+
# Set up ONNX session
|
27 |
+
ort_session = ort.InferenceSession(MODEL_PATH)
|
28 |
+
|
29 |
+
# Define image preprocessing (must match training)
|
30 |
+
transform = transforms.Compose([
|
31 |
+
transforms.Resize((256, 256)),
|
32 |
+
transforms.ToTensor(),
|
33 |
+
transforms.Normalize([0.5]*3, [0.5]*3)
|
34 |
+
])
|
35 |
+
|
36 |
+
# ======================
|
37 |
+
# Inference Function
|
38 |
+
# ======================
|
39 |
+
def predict_bone_age(image, gender):
|
40 |
+
"""
|
41 |
+
image: PIL.Image
|
42 |
+
gender: string ("Male" or "Female")
|
43 |
+
"""
|
44 |
+
# Preprocess image
|
45 |
+
img_tensor = transform(image).unsqueeze(0).numpy()
|
46 |
+
# Gender: 0=male, 1=female
|
47 |
+
gender_val = 0.0 if gender.lower() == "male" else 1.0
|
48 |
+
gender_tensor = np.array([[gender_val]], dtype=np.float32)
|
49 |
+
|
50 |
+
# ONNX inference
|
51 |
+
outputs = ort_session.run(None, {"image": img_tensor, "gender": gender_tensor})
|
52 |
+
pred_age = outputs[0][0]
|
53 |
+
|
54 |
+
# Display as years and months
|
55 |
+
years = int(pred_age // 12)
|
56 |
+
months = int(pred_age % 12)
|
57 |
+
result_str = (
|
58 |
+
f"Predicted Bone Age: **{pred_age:.1f} months** \n"
|
59 |
+
f"≈ {years} years, {months} months"
|
60 |
+
)
|
61 |
+
return result_str
|
62 |
+
|
63 |
+
# ======================
|
64 |
+
# Gradio UI
|
65 |
+
# ======================
|
66 |
+
app_title = "Bone Age Prediction from Hand X-ray"
|
67 |
+
app_desc = """
|
68 |
+
Upload a hand X-ray image and select the patient's gender. This app will predict the bone age (in months) using a powerful deep learning model.
|
69 |
+
- Model: [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m)
|
70 |
+
- Data: RSNA Pediatric Bone Age Challenge
|
71 |
+
- **For research/educational use only.**
|
72 |
+
"""
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=predict_bone_age,
|
75 |
+
inputs=[
|
76 |
+
gr.Image(type="pil", label="Hand X-ray Image"),
|
77 |
+
gr.Radio(["Male", "Female"], label="Gender")
|
78 |
+
],
|
79 |
+
outputs=gr.Markdown(label="Prediction"),
|
80 |
+
title=app_title,
|
81 |
+
description=app_desc,
|
82 |
+
allow_flagging="never"
|
83 |
+
)
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
onnxruntime
|
5 |
+
Pillow
|
6 |
+
requests
|