AbstractPhil's picture
Update app.py
d657c76 verified
import spaces
import torch
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from two_stream_shunt_adapter import TwoStreamShuntAdapter
from configs import T5_SHUNT_REPOS
import io
# ─── Global Variables ─────────────────────────────────────────
t5_tok = None
t5_mod = None
pipe = None
# Available schedulers
SCHEDULERS = {
"DPM++ 2M": DPMSolverMultistepScheduler,
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
}
# ─── Adapter Configs ──────────────────────────────────────────
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
repo_l = T5_SHUNT_REPOS["clip_l"]["repo"]
repo_g = T5_SHUNT_REPOS["clip_g"]["repo"]
config_l = T5_SHUNT_REPOS["clip_l"]["config"]
config_g = T5_SHUNT_REPOS["clip_g"]["config"]
# ─── Helper Functions ─────────────────────────────────────────
def load_adapter(repo, filename, config, device):
"""Load adapter from safetensors file"""
from safetensors.torch import safe_open
path = hf_hub_download(repo_id=repo, filename=filename)
model = TwoStreamShuntAdapter(config).eval()
tensors = {}
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)
model.load_state_dict(tensors)
return model.to(device)
def plot_heat(mat, title):
"""Create heatmap visualization with proper shape handling"""
# Handle different input shapes
if isinstance(mat, torch.Tensor):
mat = mat.detach().cpu().numpy()
# Ensure we have a 2D array for visualization
if len(mat.shape) == 1:
# 1D array - reshape to single row
mat = mat.reshape(1, -1)
elif len(mat.shape) == 3:
# 3D array - average over batch dimension
if mat.shape[0] == 1:
mat = mat.squeeze(0)
else:
mat = mat.mean(axis=0)
elif len(mat.shape) > 3:
# Flatten higher dimensions
mat = mat.reshape(-1, mat.shape[-1])
# Create figure with proper DPI
plt.figure(figsize=(8, 4), dpi=100)
plt.imshow(mat, aspect="auto", cmap="RdBu_r", origin="upper", interpolation='nearest')
plt.title(title, fontsize=12, fontweight='bold')
plt.xlabel("Token Position")
plt.ylabel("Feature Dimension")
plt.colorbar(shrink=0.8)
plt.tight_layout()
# Convert to PIL Image
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight', dpi=100)
buf.seek(0)
pil_image = Image.open(buf)
plt.close()
# Convert to numpy array for Gradio
return np.array(pil_image)
def encode_sdxl_prompt(pipe, prompt, negative_prompt, device):
"""Generate CLIP-L and CLIP-G embeddings using SDXL's text encoders"""
# Tokenize for both encoders
tokens_l = pipe.tokenizer(
prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt"
).input_ids.to(device)
tokens_g = pipe.tokenizer_2(
prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt"
).input_ids.to(device)
neg_tokens_l = pipe.tokenizer(
negative_prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt"
).input_ids.to(device)
neg_tokens_g = pipe.tokenizer_2(
negative_prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt"
).input_ids.to(device)
with torch.no_grad():
# CLIP-L: [0] = sequence, [1] = pooled
clip_l_output = pipe.text_encoder(tokens_l, output_hidden_states=False)
clip_l_embeds = clip_l_output[0]
neg_clip_l_output = pipe.text_encoder(neg_tokens_l, output_hidden_states=False)
neg_clip_l_embeds = neg_clip_l_output[0]
# CLIP-G: [0] = pooled, [1] = sequence
clip_g_output = pipe.text_encoder_2(tokens_g, output_hidden_states=False)
clip_g_embeds = clip_g_output[1] # sequence embeddings
pooled_embeds = clip_g_output[0] # pooled embeddings
neg_clip_g_output = pipe.text_encoder_2(neg_tokens_g, output_hidden_states=False)
neg_clip_g_embeds = neg_clip_g_output[1]
neg_pooled_embeds = neg_clip_g_output[0]
return {
"clip_l": clip_l_embeds,
"clip_g": clip_g_embeds,
"neg_clip_l": neg_clip_l_embeds,
"neg_clip_g": neg_clip_g_embeds,
"pooled": pooled_embeds,
"neg_pooled": neg_pooled_embeds
}
# ─── Main Inference Function ──────────────────────────────────
@spaces.GPU
def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, delta_scale,
sigma_scale, gpred_scale, noise, gate_prob, use_anchor, steps, cfg_scale,
scheduler_name, width, height, seed):
global t5_tok, t5_mod, pipe
device = torch.device("cuda")
dtype = torch.float16
# Initialize models
if t5_tok is None:
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
if pipe is None:
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=dtype,
variant="fp16",
use_safetensors=True
).to(device)
# Set seed
if seed != -1:
torch.manual_seed(seed)
np.random.seed(seed)
generator = torch.Generator(device=device).manual_seed(seed)
else:
generator = None
# Set scheduler
if scheduler_name in SCHEDULERS:
pipe.scheduler = SCHEDULERS[scheduler_name].from_config(pipe.scheduler.config)
# Get T5 embeddings
t5_ids = t5_tok(
prompt, return_tensors="pt", padding="max_length", max_length=77, truncation=True
).input_ids.to(device)
with torch.no_grad():
t5_seq = t5_mod(t5_ids).last_hidden_state
# Get CLIP embeddings
clip_embeds = encode_sdxl_prompt(pipe, prompt, negative_prompt, device)
# Load and apply adapters
if(adapter_l_file == "t5-vit-l-14-dual_shunt_booru_13_000_000.safetensors" or adapter_l_file == "t5-vit-l-14-dual_shunt_booru_51_200_000.safetensors"):
config_l["heads"] = 4
else:
config_l["heads"] = 12
adapter_l = load_adapter(repo_l, adapter_l_file, config_l, device) if adapter_l_file else None
adapter_g = load_adapter(repo_g, adapter_g_file, config_g, device) if adapter_g_file else None
# Apply CLIP-L adapter
if adapter_l is not None:
with torch.no_grad():
# Run adapter forward pass
adapter_output = adapter_l(t5_seq.float(), clip_embeds["clip_l"].float())
# Unpack outputs (ensure correct number of outputs)
if len(adapter_output) == 8:
anchor_l, delta_l, log_sigma_l, attn_l1, attn_l2, tau_l, g_pred_l, gate_l = adapter_output
else:
# Handle different return formats
anchor_l = adapter_output[0]
delta_l = adapter_output[1]
log_sigma_l = adapter_output[2] if len(adapter_output) > 2 else torch.zeros_like(delta_l)
gate_l = adapter_output[-1] if len(adapter_output) > 2 else torch.ones_like(delta_l)
tau_l = adapter_output[-2] if len(adapter_output) > 6 else torch.tensor(1.0)
g_pred_l = adapter_output[-3] if len(adapter_output) > 6 else torch.tensor(1.0)
# Scale delta values
delta_l = delta_l * delta_scale
# Apply g_pred scaling to gate
gate_l = gate_l * g_pred_l * gpred_scale
# Apply gate scaling
gate_l_scaled = torch.sigmoid(gate_l) * gate_prob
# Compute final delta with strength and gate
delta_l_final = delta_l * strength * gate_l_scaled
# Apply delta to embeddings
clip_l_mod = clip_embeds["clip_l"] + delta_l_final.to(dtype)
# Apply sigma-based noise if specified
if sigma_scale > 0:
sigma_l = torch.exp(log_sigma_l * sigma_scale)
clip_l_mod += torch.randn_like(clip_l_mod) * sigma_l.to(dtype)
# Apply anchor mixing if enabled
if use_anchor:
clip_l_mod = clip_l_mod * (1 - gate_l_scaled.to(dtype)) + anchor_l.to(dtype) * gate_l_scaled.to(dtype)
# Add additional noise if specified
if noise > 0:
clip_l_mod += torch.randn_like(clip_l_mod) * noise
else:
clip_l_mod = clip_embeds["clip_l"]
delta_l_final = torch.zeros_like(clip_embeds["clip_l"])
gate_l_scaled = torch.zeros_like(clip_embeds["clip_l"])
g_pred_l = torch.tensor(0.0)
tau_l = torch.tensor(0.0)
# Apply CLIP-G adapter
if adapter_g is not None:
with torch.no_grad():
# Run adapter forward pass
adapter_output = adapter_g(t5_seq.float(), clip_embeds["clip_g"].float())
# Unpack outputs (ensure correct number of outputs)
if len(adapter_output) == 8:
anchor_g, delta_g, log_sigma_g, attn_g1, attn_g2, tau_g, g_pred_g, gate_g = adapter_output
else:
# Handle different return formats
anchor_g = adapter_output[0]
delta_g = adapter_output[1]
log_sigma_g = adapter_output[2] if len(adapter_output) > 2 else torch.zeros_like(delta_g)
gate_g = adapter_output[-1] if len(adapter_output) > 2 else torch.ones_like(delta_g)
tau_g = adapter_output[-2] if len(adapter_output) > 6 else torch.tensor(1.0)
g_pred_g = adapter_output[-3] if len(adapter_output) > 6 else torch.tensor(1.0)
# Scale delta values
delta_g = delta_g * delta_scale
# Apply g_pred scaling to gate
gate_g = gate_g * g_pred_g * gpred_scale
# Apply gate scaling
gate_g_scaled = torch.sigmoid(gate_g) * gate_prob
# Compute final delta with strength and gate
delta_g_final = delta_g * strength * gate_g_scaled
# Apply delta to embeddings
clip_g_mod = clip_embeds["clip_g"] + delta_g_final.to(dtype)
# Apply sigma-based noise if specified
if sigma_scale > 0:
sigma_g = torch.exp(log_sigma_g * sigma_scale)
clip_g_mod += torch.randn_like(clip_g_mod) * sigma_g.to(dtype)
# Apply anchor mixing if enabled
if use_anchor:
clip_g_mod = clip_g_mod * (1 - gate_g_scaled.to(dtype)) + anchor_g.to(dtype) * gate_g_scaled.to(dtype)
# Add additional noise if specified
if noise > 0:
clip_g_mod += torch.randn_like(clip_g_mod) * noise
else:
clip_g_mod = clip_embeds["clip_g"]
delta_g_final = torch.zeros_like(clip_embeds["clip_g"])
gate_g_scaled = torch.zeros_like(clip_embeds["clip_g"])
g_pred_g = torch.tensor(0.0)
tau_g = torch.tensor(0.0)
# Combine embeddings for SDXL: [CLIP-L(768) + CLIP-G(1280)] = 2048
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1)
neg_embeds = torch.cat([clip_embeds["neg_clip_l"], clip_embeds["neg_clip_g"]], dim=-1)
# Generate image
image = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=clip_embeds["pooled"],
negative_prompt_embeds=neg_embeds,
negative_pooled_prompt_embeds=clip_embeds["neg_pooled"],
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
num_images_per_prompt=1,
generator=generator
).images[0]
# Create visualizations
delta_l_viz = plot_heat(delta_l_final.squeeze(), "CLIP-L Delta Values")
gate_l_viz = plot_heat(gate_l_scaled.squeeze().mean(dim=-1, keepdim=True), "CLIP-L Gate Activations")
delta_g_viz = plot_heat(delta_g_final.squeeze(), "CLIP-G Delta Values")
gate_g_viz = plot_heat(gate_g_scaled.squeeze().mean(dim=-1, keepdim=True), "CLIP-G Gate Activations")
# Statistics
stats_l = f"g_pred_l: {float(g_pred_l.mean().item() if hasattr(g_pred_l, 'mean') else g_pred_l):.3f}, Ο„_l: {float(tau_l.mean().item() if hasattr(tau_l, 'mean') else tau_l):.3f}"
stats_g = f"g_pred_g: {float(g_pred_g.mean().item() if hasattr(g_pred_g, 'mean') else g_pred_g):.3f}, Ο„_g: {float(tau_g.mean().item() if hasattr(tau_g, 'mean') else tau_g):.3f}"
return image, delta_l_viz, gate_l_viz, delta_g_viz, gate_g_viz, stats_l, stats_g
# ─── Gradio Interface ─────────────────────────────────────────
def create_interface():
with gr.Blocks(title="SDXL Dual Shunt Adapter", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🧠 SDXL Dual Shunt Adapter")
gr.Markdown("*Enhance SDXL generation using T5 semantic understanding to modify CLIP embeddings*")
with gr.Row():
with gr.Column(scale=1):
# Prompts
gr.Markdown("### πŸ“ Prompts")
prompt = gr.Textbox(
label="Prompt",
value="a futuristic control station with holographic displays",
lines=3,
placeholder="Describe what you want to generate..."
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, distorted",
lines=2,
placeholder="Describe what you want to avoid..."
)
# Adapters
gr.Markdown("### βš™οΈ Adapters")
adapter_l = gr.Dropdown(
choices=["None"] + clip_l_opts,
label="CLIP-L (768d) Adapter",
value="t5-vit-l-14-dual_shunt_caption.safetensors",
info="Choose adapter for CLIP-L embeddings"
)
adapter_g = gr.Dropdown(
choices=["None"] + clip_g_opts,
label="CLIP-G (1280d) Adapter",
value="dual_shunt_omega_no_caption_noised_e1_step_10000.safetensors",
info="Choose adapter for CLIP-G embeddings"
)
# Controls
gr.Markdown("### πŸŽ›οΈ Adapter Controls")
strength = gr.Slider(0.0, 10.0, value=4.0, step=0.01, label="Adapter Strength")
delta_scale = gr.Slider(-15.0, 15.0, value=0.2, step=0.1, label="Delta Scale", info="Scales the delta values, recommended 1")
sigma_scale = gr.Slider(0, 15.0, value=0.1, step=0.1, label="Sigma Scale", info="Scales the noise variance, recommended 1")
gpred_scale = gr.Slider(0.0, 20.0, value=2.0, step=0.01, label="G-Pred Scale", info="Scales the gate prediction, recommended 2")
noise = gr.Slider(0.0, 1.0, value=0.55, step=0.01, label="Noise Injection")
gate_prob = gr.Slider(0.0, 1.0, value=0.27, step=0.01, label="Gate Probability")
use_anchor = gr.Checkbox(label="Use Anchor Points", value=True)
# Generation Settings
gr.Markdown("### 🎨 Generation Settings")
with gr.Row():
steps = gr.Slider(1, 50, value=20, step=1, label="Steps")
cfg_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.1, label="CFG Scale")
scheduler_name = gr.Dropdown(
choices=list(SCHEDULERS.keys()),
value="DPM++ 2M",
label="Scheduler"
)
with gr.Row():
width = gr.Slider(512, 1536, value=1024, step=64, label="Width")
height = gr.Slider(512, 1536, value=1024, step=64, label="Height")
seed = gr.Number(value=-1, label="Seed (-1 for random)", precision=0)
generate_btn = gr.Button("πŸš€ Generate Image", variant="primary", size="lg")
with gr.Column(scale=1):
# Output
gr.Markdown("### πŸ–ΌοΈ Generated Image")
output_image = gr.Image(label="Result", height=400, show_label=False)
# Visualizations
gr.Markdown("### πŸ“Š Adapter Analysis")
with gr.Row():
delta_l_img = gr.Image(label="CLIP-L Deltas", height=200)
gate_l_img = gr.Image(label="CLIP-L Gates", height=200)
with gr.Row():
delta_g_img = gr.Image(label="CLIP-G Deltas", height=200)
gate_g_img = gr.Image(label="CLIP-G Gates", height=200)
# Statistics
gr.Markdown("### πŸ“ˆ Statistics")
stats_l_text = gr.Textbox(label="CLIP-L Metrics", interactive=False)
stats_g_text = gr.Textbox(label="CLIP-G Metrics", interactive=False)
# Event handler
def run_generation(*args):
# Process adapter selections
processed_args = list(args)
processed_args[2] = None if args[2] == "None" else args[2] # adapter_l
processed_args[3] = None if args[3] == "None" else args[3] # adapter_g
return infer(*processed_args)
generate_btn.click(
fn=run_generation,
inputs=[
prompt, negative_prompt, adapter_l, adapter_g, strength, delta_scale,
sigma_scale, gpred_scale, noise, gate_prob, use_anchor, steps, cfg_scale,
scheduler_name, width, height, seed
],
outputs=[output_image, delta_l_img, gate_l_img, delta_g_img, gate_g_img, stats_l_text, stats_g_text]
)
return demo
# ─── Launch ────────────────────────────────────────────────────
if __name__ == "__main__":
demo = create_interface()
demo.launch()