File size: 6,467 Bytes
ca066a9
403ae01
 
ca066a9
 
403ae01
ca066a9
 
620a643
 
ca066a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7229198
 
ca066a9
 
7229198
 
 
 
 
 
 
 
 
ca066a9
 
7229198
ca066a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403ae01
 
ca066a9
 
 
 
403ae01
 
ca066a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403ae01
ca066a9
 
403ae01
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DiffusionPipeline
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from two_stream_shunt_adapter import TwoStreamShuntAdapter
from configs import T5_SHUNT_REPOS

# ─── Device & Model Setup ─────────────────────────────────────
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32

t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=dtype,
    variant="fp16" if dtype == torch.float16 else None
).to(device)

# ─── Adapter Configs ──────────────────────────────────────────
clip_l_opts = T5_SHUNT_REPOS["clip_l"]["shunts_available"]["shunt_list"]
clip_g_opts = T5_SHUNT_REPOS["clip_g"]["shunts_available"]["shunt_list"]
repo_l = T5_SHUNT_REPOS["clip_l"]["repo"]
repo_g = T5_SHUNT_REPOS["clip_g"]["repo"]
config_l = T5_SHUNT_REPOS["clip_l"]["config"]
config_g = T5_SHUNT_REPOS["clip_g"]["config"]

# ─── Loader ───────────────────────────────────────────────────
from safetensors.torch import safe_open

def load_adapter(repo, filename, config):
    path = hf_hub_download(repo_id=repo, filename=filename)

    # Fallback-safe loading for ZeroGPU
    model = TwoStreamShuntAdapter(config).eval()
    tensors = {}
    with safe_open(path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensors[key] = f.get_tensor(key)
    model.load_state_dict(tensors)
    model.to(device)
    return model


# ─── Visualization ────────────────────────────────────────────
def plot_heat(mat, title):
    import io
    fig, ax = plt.subplots(figsize=(6, 3), dpi=100)
    im = ax.imshow(mat, aspect="auto", cmap="bwr", origin="upper")
    ax.set_title(title)
    plt.colorbar(im, ax=ax)
    buf = io.BytesIO()
    plt.savefig(buf, format="png", bbox_inches='tight')
    buf.seek(0)
    return buf

# ─── Inference ────────────────────────────────────────────────
@torch.no_grad()
def infer(prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob, use_anchor):
    t5_ids = t5_tok(prompt, return_tensors="pt").input_ids.to(device)
    t5_seq = t5_mod(t5_ids).last_hidden_state

    adapter_l = load_adapter(repo_l, adapter_l_file, config_l)
    adapter_g = load_adapter(repo_g, adapter_g_file, config_g)

    clip_l_in = torch.randn(t5_seq.shape[0], 77, 768).to(device)
    clip_g_in = torch.randn(t5_seq.shape[0], 77, 1280).to(device)

    anchor_l, delta_l, log_sigma_l, attn_l1, attn_l2, tau_l, g_pred_l, gate_l = adapter_l(t5_seq, clip_l_in)
    gate_l_scaled = gate_l * gate_prob
    delta_l_final = delta_l * strength * gate_l_scaled
    clip_l_mod = clip_l_in + delta_l_final
    if use_anchor:
        clip_l_mod = clip_l_mod * (1 - gate_l_scaled) + anchor_l * gate_l_scaled
    if noise > 0:
        clip_l_mod += torch.randn_like(clip_l_mod) * noise

    anchor_g, delta_g, log_sigma_g, attn_g1, attn_g2, tau_g, g_pred_g, gate_g = adapter_g(t5_seq, clip_g_in)
    gate_g_scaled = gate_g * gate_prob
    delta_g_final = delta_g * strength * gate_g_scaled
    clip_g_mod = clip_g_in + delta_g_final
    if use_anchor:
        clip_g_mod = clip_g_mod * (1 - gate_g_scaled) + anchor_g * gate_g_scaled
    if noise > 0:
        clip_g_mod += torch.randn_like(clip_g_mod) * noise

    prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1).to(dtype)
    neg_embeds = torch.zeros_like(prompt_embeds)

    image = pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=neg_embeds,
        num_inference_steps=20,
        guidance_scale=5.0
    ).images[0]

    return (
        image,
        plot_heat(delta_l_final.squeeze().cpu().numpy(), "Ξ” CLIP-L"),
        plot_heat(gate_l_scaled.squeeze().cpu().numpy(), "Gate CLIP-L"),
        plot_heat(delta_g_final.squeeze().cpu().numpy(), "Ξ” CLIP-G"),
        plot_heat(gate_g_scaled.squeeze().cpu().numpy(), "Gate CLIP-G"),
        f"g_pred_l: {g_pred_l.mean().item():.3f}, Ο„_l: {tau_l.mean().item():.3f}",
        f"g_pred_g: {g_pred_g.mean().item():.3f}, Ο„_g: {tau_g.mean().item():.3f}"
    )

# ─── Gradio App ───────────────────────────────────────────────
with gr.Blocks(title="Dual Adapter T5β†’CLIP") as demo:
    gr.Markdown("# 🧠 Dual Shunt Adapter β€’ SDXL Inference")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", value="a futuristic control station")
            adapter_l = gr.Dropdown(choices=clip_l_opts, label="CLIP-L (768d) Adapter")
            adapter_g = gr.Dropdown(choices=clip_g_opts, label="CLIP-G (1280d) Adapter")
            strength = gr.Slider(0.0, 5.0, value=1.0, step=0.1, label="Adapter Strength")
            noise = gr.Slider(0.0, 1.0, value=0.0, step=0.05, label="Noise Injection")
            gate_prob = gr.Slider(0.0, 1.0, value=1.0, step=0.05, label="Gate Probability")
            use_anchor = gr.Checkbox(label="Use Anchor", value=True)
            run_btn = gr.Button("Run")

        with gr.Column():
            out_img = gr.Image(label="Generated Image")
            delta_l = gr.Image(label="Ξ” CLIP-L")
            gate_l = gr.Image(label="Gate CLIP-L")
            delta_g = gr.Image(label="Ξ” CLIP-G")
            gate_g = gr.Image(label="Gate CLIP-G")
            stats_l = gr.Textbox(label="CLIP-L Stats")
            stats_g = gr.Textbox(label="CLIP-G Stats")

    run_btn.click(
        fn=infer,
        inputs=[prompt, adapter_l, adapter_g, strength, noise, gate_prob, use_anchor],
        outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
    )

if __name__ == "__main__":
    demo.launch()