Spaces:
Running
on
Zero
Running
on
Zero
Update beeper_model.py
Browse files- beeper_model.py +164 -202
beeper_model.py
CHANGED
|
@@ -1,33 +1,38 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
import os
|
| 7 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import torch
|
| 9 |
import torch.nn as nn
|
| 10 |
import torch.nn.functional as F
|
| 11 |
-
from typing import Optional, Tuple, Dict, Any
|
| 12 |
-
from contextlib import nullcontext
|
| 13 |
-
import inspect
|
| 14 |
-
import re
|
| 15 |
-
from tokenizers import Tokenizer
|
| 16 |
-
from safetensors.torch import load_file as load_safetensors
|
| 17 |
-
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
# Version-safe SDPA
|
| 24 |
try:
|
|
|
|
| 25 |
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
|
| 26 |
from torch.nn.attention import SDPBackend as _SDPBackend
|
| 27 |
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
|
| 28 |
_sdpa_kernel = _sdpa_kernel_modern
|
| 29 |
except Exception:
|
| 30 |
try:
|
|
|
|
| 31 |
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
|
| 32 |
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
|
| 33 |
_SDPBackend = None
|
|
@@ -39,23 +44,23 @@ except Exception:
|
|
| 39 |
|
| 40 |
|
| 41 |
def sdpa_ctx_prefer_flash():
|
| 42 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 43 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
| 44 |
return nullcontext()
|
| 45 |
|
| 46 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
| 47 |
try:
|
| 48 |
-
# Modern API (PyTorch 2.3+): backends=[...]
|
| 49 |
if "backends" in params and _SDPBackend is not None:
|
| 50 |
return _sdpa_kernel(backends=[
|
| 51 |
_SDPBackend.FLASH_ATTENTION,
|
| 52 |
_SDPBackend.EFFICIENT_ATTENTION,
|
| 53 |
_SDPBackend.MATH
|
| 54 |
])
|
| 55 |
-
# Modern API (alt): backend=...
|
| 56 |
if "backend" in params and _SDPBackend is not None:
|
| 57 |
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
|
| 58 |
-
# Legacy boolean flags (old CUDA backend)
|
| 59 |
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
|
| 60 |
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
|
| 61 |
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
|
|
@@ -65,27 +70,27 @@ def sdpa_ctx_prefer_flash():
|
|
| 65 |
return nullcontext()
|
| 66 |
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
# Model Components
|
| 70 |
-
# ============================================================================
|
| 71 |
-
|
| 72 |
class CausalSelfAttention(nn.Module):
|
| 73 |
-
"""
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
|
| 76 |
super().__init__()
|
| 77 |
-
assert dim % n_heads == 0
|
| 78 |
-
self.nh = n_heads
|
| 79 |
-
self.hd = dim //
|
| 80 |
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
|
| 81 |
self.proj = nn.Linear(dim, dim, bias=False)
|
| 82 |
-
self.attn_dropout = attn_dropout
|
| 83 |
|
| 84 |
-
def forward(self, x):
|
| 85 |
B, T, C = x.shape
|
| 86 |
qkv = self.qkv(x)
|
| 87 |
q, k, v = qkv.chunk(3, dim=-1)
|
| 88 |
-
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 89 |
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 90 |
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 91 |
|
|
@@ -109,16 +114,15 @@ class CausalSelfAttention(nn.Module):
|
|
| 109 |
|
| 110 |
|
| 111 |
class MLP(nn.Module):
|
| 112 |
-
"""
|
| 113 |
-
|
| 114 |
-
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
|
| 115 |
super().__init__()
|
| 116 |
hidden = int(dim * mlp_ratio)
|
| 117 |
self.fc1 = nn.Linear(dim, hidden)
|
| 118 |
self.fc2 = nn.Linear(hidden, dim)
|
| 119 |
self.drop = nn.Dropout(dropout)
|
| 120 |
-
|
| 121 |
-
def forward(self, x):
|
| 122 |
x = self.fc1(x)
|
| 123 |
x = F.gelu(x, approximate="tanh")
|
| 124 |
x = self.drop(x)
|
|
@@ -127,47 +131,62 @@ class MLP(nn.Module):
|
|
| 127 |
return x
|
| 128 |
|
| 129 |
|
|
|
|
| 130 |
class BeeperRoseGPT(nn.Module):
|
| 131 |
-
"""
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
def __init__(self, cfg: dict):
|
| 134 |
super().__init__()
|
| 135 |
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
|
| 136 |
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
|
| 137 |
-
RD, AD
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
self.vocab_size, self.context = V, Ctx
|
| 140 |
self.token_emb = nn.Embedding(V, D)
|
| 141 |
-
self.pos_emb
|
| 142 |
-
self.drop
|
| 143 |
|
| 144 |
self.blocks = nn.ModuleList([
|
| 145 |
nn.ModuleDict({
|
| 146 |
"norm1": nn.LayerNorm(D),
|
| 147 |
-
"attn":
|
| 148 |
"norm2": nn.LayerNorm(D),
|
| 149 |
-
"mlp":
|
| 150 |
-
})
|
|
|
|
| 151 |
])
|
| 152 |
-
|
|
|
|
| 153 |
self.lm_head = nn.Linear(D, V, bias=False)
|
|
|
|
|
|
|
| 154 |
self.lm_head.weight = self.token_emb.weight
|
| 155 |
|
| 156 |
-
#
|
| 157 |
-
self.rose_proj
|
| 158 |
-
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
|
| 159 |
|
| 160 |
-
#
|
| 161 |
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
|
| 162 |
-
self.penta_coarse = None
|
| 163 |
-
self.penta_medium = None
|
| 164 |
-
self.penta_fine = None
|
| 165 |
|
| 166 |
-
self.apply(self.
|
| 167 |
-
self.grad_checkpoint = CKPT
|
| 168 |
|
| 169 |
@staticmethod
|
| 170 |
-
def
|
| 171 |
if isinstance(m, nn.Linear):
|
| 172 |
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 173 |
if m.bias is not None:
|
|
@@ -175,92 +194,95 @@ class BeeperRoseGPT(nn.Module):
|
|
| 175 |
elif isinstance(m, nn.Embedding):
|
| 176 |
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
if self.pent_inited.item() == 1:
|
| 181 |
return
|
| 182 |
|
| 183 |
-
def bank(C):
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
return nn.Parameter(
|
| 190 |
-
|
| 191 |
-
self.penta_coarse = bank(coarse_C)
|
| 192 |
-
self.penta_medium = bank(medium_C)
|
| 193 |
-
self.penta_fine
|
| 194 |
self.pent_inited.fill_(1)
|
| 195 |
|
| 196 |
-
|
|
|
|
| 197 |
x = x + blk["attn"](blk["norm1"](x))
|
| 198 |
x = x + blk["mlp"](blk["norm2"](x))
|
| 199 |
return x
|
| 200 |
|
| 201 |
-
def backbone(self, idx):
|
| 202 |
B, T = idx.shape
|
| 203 |
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
|
| 204 |
x = self.drop(x)
|
| 205 |
if self.grad_checkpoint and self.training:
|
| 206 |
from torch.utils.checkpoint import checkpoint
|
| 207 |
for blk in self.blocks:
|
| 208 |
-
x = checkpoint(lambda _x: self._block_forward(blk, _x), x)
|
| 209 |
else:
|
| 210 |
for blk in self.blocks:
|
| 211 |
x = self._block_forward(blk, x)
|
| 212 |
return self.norm(x)
|
| 213 |
|
| 214 |
-
def forward(self, idx):
|
| 215 |
h = self.backbone(idx)
|
| 216 |
return self.lm_head(h)
|
| 217 |
|
| 218 |
-
|
|
|
|
|
|
|
| 219 |
return self.backbone(idx)
|
| 220 |
|
| 221 |
-
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
|
|
|
|
| 222 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
| 223 |
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
-
|
| 230 |
-
"""
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
out = {}
|
| 236 |
-
for k, v in sd.items():
|
| 237 |
-
if k.startswith("_orig_mod."):
|
| 238 |
-
k = k[10:]
|
| 239 |
-
if k.startswith("module."):
|
| 240 |
-
k = k[7:]
|
| 241 |
-
out[k] = v
|
| 242 |
-
return out
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
|
| 253 |
-
sd = BeeperIO.clean_state(sd)
|
| 254 |
-
result = model.load_state_dict(sd, strict=strict)
|
| 255 |
-
return result.missing_keys, result.unexpected_keys
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
# ============================================================================
|
| 259 |
-
# Text Generation
|
| 260 |
-
# ============================================================================
|
| 261 |
|
|
|
|
| 262 |
def _detok(text: str) -> str:
|
| 263 |
-
"""Clean up tokenized text spacing."""
|
| 264 |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
|
| 265 |
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
|
| 266 |
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
|
|
@@ -268,92 +290,67 @@ def _detok(text: str) -> str:
|
|
| 268 |
|
| 269 |
|
| 270 |
@torch.no_grad()
|
| 271 |
-
def generate(
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
| 284 |
"""
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
Args:
|
| 288 |
-
model: The BeeperRoseGPT model
|
| 289 |
-
tok: Tokenizer instance
|
| 290 |
-
cfg: Configuration dictionary
|
| 291 |
-
prompt: Input text prompt
|
| 292 |
-
max_new_tokens: Maximum number of tokens to generate
|
| 293 |
-
temperature: Sampling temperature (higher = more random)
|
| 294 |
-
top_k: Top-k sampling parameter
|
| 295 |
-
top_p: Top-p (nucleus) sampling parameter
|
| 296 |
-
repetition_penalty: Penalty for repeated tokens
|
| 297 |
-
presence_penalty: Penalty for tokens that have appeared
|
| 298 |
-
frequency_penalty: Penalty based on token frequency
|
| 299 |
-
device: Device to run on
|
| 300 |
-
detokenize: Whether to clean up tokenization artifacts
|
| 301 |
-
|
| 302 |
-
Returns:
|
| 303 |
-
Generated text string
|
| 304 |
"""
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
presence_penalty = cfg["presence_penalty"] if presence_penalty is None else presence_penalty
|
| 312 |
-
frequency_penalty = cfg["frequency_penalty"] if frequency_penalty is None else frequency_penalty
|
| 313 |
|
| 314 |
device = device or next(model.parameters()).device
|
| 315 |
model.eval()
|
| 316 |
-
|
| 317 |
-
# Tokenize prompt
|
| 318 |
ids = tok.encode(prompt).ids
|
| 319 |
x = torch.tensor([ids], dtype=torch.long, device=device)
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
|
| 323 |
for t in ids:
|
| 324 |
-
if 0 <= t <
|
| 325 |
counts[t] += 1
|
| 326 |
|
| 327 |
-
|
| 328 |
-
for _ in range(max_new_tokens):
|
| 329 |
-
# Get logits for next token
|
| 330 |
logits = model(x[:, -cfg["context"]:])
|
| 331 |
logits = logits[:, -1, :]
|
| 332 |
|
| 333 |
-
#
|
| 334 |
if repetition_penalty and repetition_penalty != 1.0:
|
| 335 |
mask = counts > 0
|
| 336 |
if mask.any():
|
| 337 |
pos = logits[:, mask] > 0
|
| 338 |
-
logits[:, mask][pos]
|
| 339 |
logits[:, mask][~pos] *= repetition_penalty
|
| 340 |
|
| 341 |
-
#
|
| 342 |
if presence_penalty or frequency_penalty:
|
| 343 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
| 344 |
logits = logits - pen.unsqueeze(0)
|
| 345 |
|
| 346 |
-
# Apply temperature
|
| 347 |
logits = logits / max(1e-8, temperature)
|
| 348 |
|
| 349 |
-
# Apply top-k sampling
|
| 350 |
if top_k and top_k > 0:
|
| 351 |
k = min(top_k, logits.size(-1))
|
| 352 |
v, ix = torch.topk(logits, k, dim=-1)
|
| 353 |
filt = torch.full_like(logits, float("-inf"))
|
| 354 |
logits = filt.scatter_(-1, ix, v)
|
| 355 |
|
| 356 |
-
# Apply top-p (nucleus) sampling
|
| 357 |
if top_p and top_p < 1.0:
|
| 358 |
sl, si = torch.sort(logits, descending=True)
|
| 359 |
ps = F.softmax(sl, dim=-1)
|
|
@@ -363,47 +360,12 @@ def generate(model: BeeperRoseGPT,
|
|
| 363 |
sl = sl.masked_fill(mask, float("-inf"))
|
| 364 |
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
|
| 365 |
|
| 366 |
-
# Sample next token
|
| 367 |
probs = F.softmax(logits, dim=-1)
|
| 368 |
next_id = torch.multinomial(probs, num_samples=1)
|
| 369 |
x = torch.cat([x, next_id], dim=1)
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
|
| 372 |
-
# Decode output
|
| 373 |
out = tok.decode(x[0].tolist())
|
| 374 |
return _detok(out) if detokenize else out
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
# ============================================================================
|
| 378 |
-
# Default Configuration
|
| 379 |
-
# ============================================================================
|
| 380 |
-
|
| 381 |
-
def get_default_config():
|
| 382 |
-
"""Get the default configuration for the model."""
|
| 383 |
-
return {
|
| 384 |
-
"name": "Rose-Beeper",
|
| 385 |
-
"context": 512,
|
| 386 |
-
"vocab_size": 8192,
|
| 387 |
-
"dim": 512,
|
| 388 |
-
"n_layers": 6,
|
| 389 |
-
"n_heads": 8,
|
| 390 |
-
"mlp_ratio": 4.0,
|
| 391 |
-
"dropout": 0.0,
|
| 392 |
-
"resid_dropout": 0.1,
|
| 393 |
-
"grad_checkpoint": False,
|
| 394 |
-
|
| 395 |
-
# Generation defaults
|
| 396 |
-
"temperature": 0.9,
|
| 397 |
-
"top_k": 40,
|
| 398 |
-
"top_p": 0.9,
|
| 399 |
-
"repetition_penalty": 1.10,
|
| 400 |
-
"presence_penalty": 0.6,
|
| 401 |
-
"frequency_penalty": 0.0,
|
| 402 |
-
|
| 403 |
-
# Capoera configuration
|
| 404 |
-
"capoera": {
|
| 405 |
-
"enable": True,
|
| 406 |
-
"topic_bins": 512,
|
| 407 |
-
"mood_bins": 7,
|
| 408 |
-
}
|
| 409 |
-
}
|
|
|
|
| 1 |
+
# beeper.py
|
| 2 |
+
# --------------------------------------------------------------------------------------------------
|
| 3 |
+
# Beeper — Rose-based tiny GPT (inference module)
|
| 4 |
+
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere+)
|
| 5 |
+
# - Model exactly mirrors the training-time architecture you provided (dim=512, L=6, H=8)
|
| 6 |
+
# - Safe state-dict loader that auto-sizes pentachora banks before strict load
|
| 7 |
+
# - Generation API with repetition/presence/frequency penalties (same defaults as training)
|
| 8 |
+
# --------------------------------------------------------------------------------------------------
|
| 9 |
+
from __future__ import annotations
|
| 10 |
|
|
|
|
| 11 |
import math
|
| 12 |
+
import re
|
| 13 |
+
import inspect
|
| 14 |
+
from contextlib import nullcontext
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
|
| 17 |
import torch
|
| 18 |
import torch.nn as nn
|
| 19 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# --- Prefer high-throughput matmul where possible (Ampere/Hopper) ---
|
| 22 |
+
torch.set_float32_matmul_precision("high")
|
| 23 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 24 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 25 |
|
| 26 |
+
# ---- Version-safe SDPA (FlashAttention) selection -------------------------------------------------
|
| 27 |
try:
|
| 28 |
+
# PyTorch 2.3+ modern API
|
| 29 |
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
|
| 30 |
from torch.nn.attention import SDPBackend as _SDPBackend
|
| 31 |
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
|
| 32 |
_sdpa_kernel = _sdpa_kernel_modern
|
| 33 |
except Exception:
|
| 34 |
try:
|
| 35 |
+
# Legacy API
|
| 36 |
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
|
| 37 |
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
|
| 38 |
_SDPBackend = None
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
def sdpa_ctx_prefer_flash():
|
| 47 |
+
"""
|
| 48 |
+
Best-effort context to bias SDPA toward FlashAttention on supported GPUs.
|
| 49 |
+
Falls back to no-op if not available.
|
| 50 |
+
"""
|
| 51 |
if _sdpa_kernel is None or _SDPA_SIG is None:
|
| 52 |
return nullcontext()
|
| 53 |
|
| 54 |
params = {p.name for p in _SDPA_SIG.parameters.values()}
|
| 55 |
try:
|
|
|
|
| 56 |
if "backends" in params and _SDPBackend is not None:
|
| 57 |
return _sdpa_kernel(backends=[
|
| 58 |
_SDPBackend.FLASH_ATTENTION,
|
| 59 |
_SDPBackend.EFFICIENT_ATTENTION,
|
| 60 |
_SDPBackend.MATH
|
| 61 |
])
|
|
|
|
| 62 |
if "backend" in params and _SDPBackend is not None:
|
| 63 |
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
|
|
|
|
| 64 |
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
|
| 65 |
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
|
| 66 |
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
|
|
|
|
| 70 |
return nullcontext()
|
| 71 |
|
| 72 |
|
| 73 |
+
# --------------------------------- Core blocks ------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
| 74 |
class CausalSelfAttention(nn.Module):
|
| 75 |
+
"""
|
| 76 |
+
Multi-head causal self-attention layer using PyTorch SDPA.
|
| 77 |
+
- On CUDA, uses scaled_dot_product_attention with is_causal=True and dropout during training.
|
| 78 |
+
- On CPU, falls back to manual masked attention.
|
| 79 |
+
"""
|
| 80 |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
|
| 81 |
super().__init__()
|
| 82 |
+
assert dim % n_heads == 0, "dim must be divisible by n_heads"
|
| 83 |
+
self.nh = int(n_heads)
|
| 84 |
+
self.hd = dim // self.nh
|
| 85 |
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
|
| 86 |
self.proj = nn.Linear(dim, dim, bias=False)
|
| 87 |
+
self.attn_dropout = float(attn_dropout)
|
| 88 |
|
| 89 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 90 |
B, T, C = x.shape
|
| 91 |
qkv = self.qkv(x)
|
| 92 |
q, k, v = qkv.chunk(3, dim=-1)
|
| 93 |
+
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) # [B,H,T,D]
|
| 94 |
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 95 |
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 96 |
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
class MLP(nn.Module):
|
| 117 |
+
"""GELU MLP with dropout, sized by mlp_ratio."""
|
| 118 |
+
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
|
|
|
|
| 119 |
super().__init__()
|
| 120 |
hidden = int(dim * mlp_ratio)
|
| 121 |
self.fc1 = nn.Linear(dim, hidden)
|
| 122 |
self.fc2 = nn.Linear(hidden, dim)
|
| 123 |
self.drop = nn.Dropout(dropout)
|
| 124 |
+
|
| 125 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 126 |
x = self.fc1(x)
|
| 127 |
x = F.gelu(x, approximate="tanh")
|
| 128 |
x = self.drop(x)
|
|
|
|
| 131 |
return x
|
| 132 |
|
| 133 |
|
| 134 |
+
# --------------------------------- Beeper Model -----------------------------------------------------
|
| 135 |
class BeeperRoseGPT(nn.Module):
|
| 136 |
+
"""
|
| 137 |
+
Decoder-only GPT used by Beeper during training and inference.
|
| 138 |
+
|
| 139 |
+
Config keys used:
|
| 140 |
+
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
|
| 141 |
+
- resid_dropout, dropout, grad_checkpoint
|
| 142 |
+
Notes:
|
| 143 |
+
- Shares token embedding with LM head (tied weights).
|
| 144 |
+
- Includes Rose projection/anchors and pentachora banks; unused for plain generation,
|
| 145 |
+
but kept for full compatibility with trained checkpoints.
|
| 146 |
+
"""
|
| 147 |
def __init__(self, cfg: dict):
|
| 148 |
super().__init__()
|
| 149 |
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
|
| 150 |
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
|
| 151 |
+
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
|
| 152 |
+
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
|
| 153 |
+
|
| 154 |
+
self.vocab_size, self.context = int(V), int(Ctx)
|
| 155 |
|
|
|
|
| 156 |
self.token_emb = nn.Embedding(V, D)
|
| 157 |
+
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
|
| 158 |
+
self.drop = nn.Dropout(RD)
|
| 159 |
|
| 160 |
self.blocks = nn.ModuleList([
|
| 161 |
nn.ModuleDict({
|
| 162 |
"norm1": nn.LayerNorm(D),
|
| 163 |
+
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
|
| 164 |
"norm2": nn.LayerNorm(D),
|
| 165 |
+
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
|
| 166 |
+
})
|
| 167 |
+
for _ in range(L)
|
| 168 |
])
|
| 169 |
+
|
| 170 |
+
self.norm = nn.LayerNorm(D)
|
| 171 |
self.lm_head = nn.Linear(D, V, bias=False)
|
| 172 |
+
|
| 173 |
+
# Weight tying
|
| 174 |
self.lm_head.weight = self.token_emb.weight
|
| 175 |
|
| 176 |
+
# Rose projection + anchors (present in checkpoints)
|
| 177 |
+
self.rose_proj = nn.Linear(D, D, bias=False)
|
| 178 |
+
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D ** 0.5))
|
| 179 |
|
| 180 |
+
# Pentachora banks (created lazily to match state dict)
|
| 181 |
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
|
| 182 |
+
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D]
|
| 183 |
+
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D]
|
| 184 |
+
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D]
|
| 185 |
|
| 186 |
+
self.apply(self._init_weights)
|
|
|
|
| 187 |
|
| 188 |
@staticmethod
|
| 189 |
+
def _init_weights(m: nn.Module):
|
| 190 |
if isinstance(m, nn.Linear):
|
| 191 |
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 192 |
if m.bias is not None:
|
|
|
|
| 194 |
elif isinstance(m, nn.Embedding):
|
| 195 |
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 196 |
|
| 197 |
+
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
|
| 198 |
+
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
|
| 199 |
+
"""
|
| 200 |
+
Initialize pentachora banks if not already present.
|
| 201 |
+
Shapes must match checkpoint entries for strict loading.
|
| 202 |
+
"""
|
| 203 |
if self.pent_inited.item() == 1:
|
| 204 |
return
|
| 205 |
|
| 206 |
+
def bank(C: int) -> nn.Parameter:
|
| 207 |
+
if C <= 0:
|
| 208 |
+
# Keep a zero-sized parameter to satisfy strict loading (rare).
|
| 209 |
+
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
|
| 210 |
+
pts = torch.randn(C, 5, dim, device=device)
|
| 211 |
+
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
|
| 212 |
+
return nn.Parameter(pts)
|
| 213 |
+
|
| 214 |
+
self.penta_coarse = bank(int(coarse_C))
|
| 215 |
+
self.penta_medium = bank(int(medium_C))
|
| 216 |
+
self.penta_fine = bank(int(fine_C))
|
| 217 |
self.pent_inited.fill_(1)
|
| 218 |
|
| 219 |
+
# ---- Backbone / forward -----------------------------------------------------------------------
|
| 220 |
+
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
|
| 221 |
x = x + blk["attn"](blk["norm1"](x))
|
| 222 |
x = x + blk["mlp"](blk["norm2"](x))
|
| 223 |
return x
|
| 224 |
|
| 225 |
+
def backbone(self, idx: torch.Tensor) -> torch.Tensor:
|
| 226 |
B, T = idx.shape
|
| 227 |
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
|
| 228 |
x = self.drop(x)
|
| 229 |
if self.grad_checkpoint and self.training:
|
| 230 |
from torch.utils.checkpoint import checkpoint
|
| 231 |
for blk in self.blocks:
|
| 232 |
+
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore[arg-type]
|
| 233 |
else:
|
| 234 |
for blk in self.blocks:
|
| 235 |
x = self._block_forward(blk, x)
|
| 236 |
return self.norm(x)
|
| 237 |
|
| 238 |
+
def forward(self, idx: torch.Tensor) -> torch.Tensor:
|
| 239 |
h = self.backbone(idx)
|
| 240 |
return self.lm_head(h)
|
| 241 |
|
| 242 |
+
# ---- Utilities ---------------------------------------------------------------------------------
|
| 243 |
+
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
|
| 244 |
+
"""Return final hidden states (pre-LM head)."""
|
| 245 |
return self.backbone(idx)
|
| 246 |
|
| 247 |
+
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
|
| 248 |
+
"""Pool hidden states for Rose-related terms (unused in plain generation)."""
|
| 249 |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
|
| 250 |
|
| 251 |
|
| 252 |
+
# --------------------------------- Loader helpers ---------------------------------------------------
|
| 253 |
+
def prepare_model_for_state_dict(
|
| 254 |
+
model: BeeperRoseGPT,
|
| 255 |
+
state_dict: "dict[str, torch.Tensor]",
|
| 256 |
+
device: Optional[torch.device] = None,
|
| 257 |
+
) -> None:
|
| 258 |
+
"""
|
| 259 |
+
Ensure model has pentachora parameters sized to match the incoming state_dict,
|
| 260 |
+
so we can load with strict=True.
|
| 261 |
|
| 262 |
+
If the checkpoint has no pentachora (older versions), we do nothing.
|
| 263 |
+
"""
|
| 264 |
+
device = device or next(model.parameters()).device
|
| 265 |
+
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
|
| 266 |
+
if not need:
|
| 267 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
|
| 270 |
+
# Expect [C,5,D]
|
| 271 |
+
def dims_ok(t: torch.Tensor) -> bool:
|
| 272 |
+
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == model.token_emb.embedding_dim
|
| 273 |
+
|
| 274 |
+
if not (dims_ok(pc) and dims_ok(pt) and dims_ok(pm)):
|
| 275 |
+
# Shapes inconsistent; fall back to non-strict load later.
|
| 276 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
coarse_C = pc.size(0)
|
| 279 |
+
topic_C = pt.size(0)
|
| 280 |
+
mood_C = pm.size(0)
|
| 281 |
+
model.ensure_pentachora(coarse_C, topic_C, mood_C, dim=pc.size(2), device=device)
|
| 282 |
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
+
# --------------------------------- Generation -------------------------------------------------------
|
| 285 |
def _detok(text: str) -> str:
|
|
|
|
| 286 |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
|
| 287 |
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
|
| 288 |
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
|
|
|
|
| 290 |
|
| 291 |
|
| 292 |
@torch.no_grad()
|
| 293 |
+
def generate(
|
| 294 |
+
model: BeeperRoseGPT,
|
| 295 |
+
tok, # Hugging Face Tokenizers `Tokenizer`
|
| 296 |
+
cfg: dict,
|
| 297 |
+
prompt: str,
|
| 298 |
+
max_new_tokens: int = 120,
|
| 299 |
+
temperature: Optional[float] = None,
|
| 300 |
+
top_k: Optional[int] = None,
|
| 301 |
+
top_p: Optional[float] = None,
|
| 302 |
+
repetition_penalty: Optional[float] = None,
|
| 303 |
+
presence_penalty: Optional[float] = None,
|
| 304 |
+
frequency_penalty: Optional[float] = None,
|
| 305 |
+
device: Optional[torch.device] = None,
|
| 306 |
+
detokenize: bool = True,
|
| 307 |
+
) -> str:
|
| 308 |
"""
|
| 309 |
+
Penalized nucleus sampling (same knobs as training script).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
"""
|
| 311 |
+
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
|
| 312 |
+
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
|
| 313 |
+
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
|
| 314 |
+
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
|
| 315 |
+
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
|
| 316 |
+
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)
|
|
|
|
|
|
|
| 317 |
|
| 318 |
device = device or next(model.parameters()).device
|
| 319 |
model.eval()
|
| 320 |
+
|
|
|
|
| 321 |
ids = tok.encode(prompt).ids
|
| 322 |
x = torch.tensor([ids], dtype=torch.long, device=device)
|
| 323 |
+
V = int(cfg["vocab_size"])
|
| 324 |
+
counts = torch.zeros(V, dtype=torch.int32, device=device)
|
|
|
|
| 325 |
for t in ids:
|
| 326 |
+
if 0 <= t < V:
|
| 327 |
counts[t] += 1
|
| 328 |
|
| 329 |
+
for _ in range(int(max_new_tokens)):
|
|
|
|
|
|
|
| 330 |
logits = model(x[:, -cfg["context"]:])
|
| 331 |
logits = logits[:, -1, :]
|
| 332 |
|
| 333 |
+
# Repetition penalty (CTRL-like)
|
| 334 |
if repetition_penalty and repetition_penalty != 1.0:
|
| 335 |
mask = counts > 0
|
| 336 |
if mask.any():
|
| 337 |
pos = logits[:, mask] > 0
|
| 338 |
+
logits[:, mask][pos] /= repetition_penalty
|
| 339 |
logits[:, mask][~pos] *= repetition_penalty
|
| 340 |
|
| 341 |
+
# Presence/frequency penalties (OpenAI-like)
|
| 342 |
if presence_penalty or frequency_penalty:
|
| 343 |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
| 344 |
logits = logits - pen.unsqueeze(0)
|
| 345 |
|
|
|
|
| 346 |
logits = logits / max(1e-8, temperature)
|
| 347 |
|
|
|
|
| 348 |
if top_k and top_k > 0:
|
| 349 |
k = min(top_k, logits.size(-1))
|
| 350 |
v, ix = torch.topk(logits, k, dim=-1)
|
| 351 |
filt = torch.full_like(logits, float("-inf"))
|
| 352 |
logits = filt.scatter_(-1, ix, v)
|
| 353 |
|
|
|
|
| 354 |
if top_p and top_p < 1.0:
|
| 355 |
sl, si = torch.sort(logits, descending=True)
|
| 356 |
ps = F.softmax(sl, dim=-1)
|
|
|
|
| 360 |
sl = sl.masked_fill(mask, float("-inf"))
|
| 361 |
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
|
| 362 |
|
|
|
|
| 363 |
probs = F.softmax(logits, dim=-1)
|
| 364 |
next_id = torch.multinomial(probs, num_samples=1)
|
| 365 |
x = torch.cat([x, next_id], dim=1)
|
| 366 |
+
nid = next_id.item()
|
| 367 |
+
if 0 <= nid < V:
|
| 368 |
+
counts[nid] += 1
|
| 369 |
|
|
|
|
| 370 |
out = tok.decode(x[0].tolist())
|
| 371 |
return _detok(out) if detokenize else out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|