Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -83,7 +83,6 @@ def pool_accuracy(ids, logits, pool_mask):
|
|
83 |
return (preds==gold).float().mean().item()
|
84 |
|
85 |
|
86 |
-
@spaces.GPU
|
87 |
@spaces.GPU
|
88 |
def encode_and_trace(text, selected_roles):
|
89 |
if not selected_roles:
|
@@ -107,7 +106,8 @@ def encode_and_trace(text, selected_roles):
|
|
107 |
encoded = encode(ids, attn)
|
108 |
|
109 |
# ========== Cosine Similarity ==========
|
110 |
-
symbolic_embeds = embeddings(sel_ids_tensor)
|
|
|
111 |
sim = cosine(encoded.unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
112 |
maxcos, argrole = sim.max(-1) # (S,)
|
113 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|
|
|
83 |
return (preds==gold).float().mean().item()
|
84 |
|
85 |
|
|
|
86 |
@spaces.GPU
|
87 |
def encode_and_trace(text, selected_roles):
|
88 |
if not selected_roles:
|
|
|
106 |
encoded = encode(ids, attn)
|
107 |
|
108 |
# ========== Cosine Similarity ==========
|
109 |
+
symbolic_embeds = embeddings.word_embeddings(sel_ids_tensor)
|
110 |
+
|
111 |
sim = cosine(encoded.unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
112 |
maxcos, argrole = sim.max(-1) # (S,)
|
113 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|