AbstractPhil's picture
Update app.py
da8b548 verified
raw
history blame
6.93 kB
# app.py – encoder-only demo + pool-and-test prototype
# ----------------------------------------------------
# launch: python app.py
# UI: http://localhost:7860
import json, re, sys, math
from pathlib import Path, PurePosixPath
import torch, torch.nn.functional as F
import gradio as gr, spaces
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. One-time patch of auto_map in config.json
# ------------------------------------------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048"
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_CKPT,
local_dir_use_symlinks=False,
)
cfg_path = Path(LOCAL_CKPT) / "config.json"
cfg = json.loads(cfg_path.read_text())
auto_map = cfg.get("auto_map", {})
changed = False
for k, v in auto_map.items():
if "--" in v: # strip “repo--”
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
changed = True
if changed:
cfg_path.write_text(json.dumps(cfg, indent=2))
print("🛠️ Patched config.json → auto_map points to local modules")
# ------------------------------------------------------------------
# 1. Load model + tokenizer with BERTHandler
# ------------------------------------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# pull encoder & embedding stack
encoder = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_weight = embeddings.word_embeddings.weight # <- correct tensor
emb_ln = full_model.bert.emb_ln
emb_drop = full_model.bert.emb_drop
# ------------------------------------------------------------------
# 2. Symbolic roles
# ------------------------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
missing = [t for t in SYMBOLIC_ROLES
if tokenizer.convert_tokens_to_ids(t) == tokenizer.unk_token_id]
if missing:
sys.exit(f"❌ Tokenizer missing {missing}")
MASK_ID = tokenizer.mask_token_id
MASK_TOK = tokenizer.mask_token
# ------------------------------------------------------------------
# helpers -----------------------------------------------------------
def contextual_vectors(ids, mask):
"""run through embedding→encoder, return (S,H) hidden states"""
x = emb_drop(emb_ln(embeddings(ids))) # (1,S,H)
ext = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
return encoder(x, attention_mask=ext).squeeze(0) # (S,H)
def pool_accuracy(ids, mask, pool_positions):
"""mask positions in pool, predict, calc accuracy"""
masked = ids.clone()
masked[0, pool_positions] = MASK_ID
with torch.no_grad():
logits = full_model(masked, attention_mask=mask).logits[0]
preds = logits.argmax(-1)
gold = ids.squeeze(0)
correct = (preds[pool_positions] == gold[pool_positions]).sum().item()
return correct / len(pool_positions) if pool_positions else 0.0
# cosine utility
def cos(a, b): return F.cosine_similarity(a, b, dim=-1, eps=1e-8).item()
# ------------------------------------------------------------------
# 3. Core routine ---------------------------------------------------
@spaces.GPU
def encode_and_trace(text: str, picked_roles: list[str]):
# -------- tokenise ----------
batch = tokenizer(text, return_tensors="pt").to("cuda")
ids, attn = batch.input_ids, batch.attention_mask
hid = contextual_vectors(ids, attn) # (S,H)
# -------- decide which roles we analyse ----------
present = {tid: pos for pos, tid in enumerate(ids[0].tolist())
if tid in {tokenizer.convert_tokens_to_ids(r) for r in SYMBOLIC_ROLES}}
if picked_roles:
present = {tid: pos for tid, pos in present.items()
if tokenizer.convert_ids_to_tokens([tid])[0] in picked_roles}
if not present:
return "No symbolic tokens in sentence", "", ""
# -------- similarity scores ----------
sims = []
for tid, pos in present.items():
rvec = emb_weight[tid] # static embedding
cvec = hid[pos] # contextual
sims.append((cos(cvec, rvec), tid, pos))
sims.sort() # low → high
# pools: bottom-2, top-2 (expand later)
low_pool, high_pool = sims[:2], sims[-2:]
accepted = []
for grow in range(1 + math.ceil(len(sims)/2)): # ≤26 shots
for tag, pool in [("low", low_pool), ("high", high_pool)]:
pool_pos = [p for _,_,p in pool]
acc = pool_accuracy(ids, attn, pool_pos)
if acc >= 0.5: # category accepted
roles = [tokenizer.convert_ids_to_tokens([tid])[0] for _,tid,_ in pool]
accepted.append(f"{tag}:{roles} (acc {acc:.2f})")
if accepted: break # stop once something passed
# grow pools by two (if any left)
next_lo = sims[2+grow*2 : 4+grow*2]
next_hi = sims[-4-grow*2 : -2-grow*2] if 4+grow*2 <= len(sims) else []
low_pool += next_lo
high_pool += next_hi
if not accepted:
accepted = ["(none hit 50 %)"]
return ", ".join(accepted), f"{len(present)} roles analysed", f"{text[:80]}…"
# ------------------------------------------------------------------
# 4. UI -------------------------------------------------------------
def build_ui():
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
gr.Markdown(
"## 🧠 Symbolic Encoder Inspector \n"
"Select roles, paste text, and watch the pool-and-test prototype work."
)
with gr.Row():
with gr.Column():
txt = gr.Textbox(lines=3, label="Input")
roles = gr.CheckboxGroup(
SYMBOLIC_ROLES,
value=SYMBOLIC_ROLES,
label="Roles to consider (else all present)"
)
btn = gr.Button("Run")
with gr.Column():
out_cat = gr.Textbox(label="Accepted categories")
out_info= gr.Textbox(label="Debug")
out_excerpt = gr.Textbox(label="Excerpt")
btn.click(encode_and_trace, [txt, roles], [out_cat, out_info, out_excerpt])
return demo
if __name__ == "__main__":
build_ui().launch()