AbstractPhil's picture
Update app.py
a0fce12 verified
raw
history blame
5.13 kB
# app.py – encoder-only demo for bert-beatrix-2048
# -----------------------------------------------
# launch: python app.py
import spaces
import torch
import gradio as gr
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
from pathlib import Path
# ------------------------------------------------------------------
# 1. Download *once* and load locally -----------------------------
# ------------------------------------------------------------------
LOCAL_CKPT = snapshot_download(
repo_id="AbstractPhil/bert-beatrix-2048",
revision="main",
local_dir="bert-beatrix-2048",
local_dir_use_symlinks=False,
)
cfg_path = Path(LOCAL_CKPT) / "config.json"
with open(cfg_path) as f:
cfg = json.load(f)
auto_map = cfg.get("auto_map", {})
changed = False
for k, v in auto_map.items():
# v looks like "AbstractPhil/bert-beatrix-2048--modeling_hf_nomic_bert.…"
if "--" in v:
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
changed = True
if changed:
cfg["auto_map"] = auto_map
with open(cfg_path, "w") as f:
json.dump(cfg, f, indent=2)
print("πŸ”§ Patched auto_map β†’ now points to local modules only")
# also drop any *previously* imported remote modules in this session
for name in list(sys.modules):
if name.startswith("transformers_modules.AbstractPhil.bert-beatrix-2048"):
del sys.modules[name]
# ------------------------------------------------------------------
# 1. normal load via BERTHandler ---------------------------------
# ------------------------------------------------------------------
from bert_handler import create_handler_from_checkpoint
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# --- pull encoder & embeddings only --------------------------------
encoder = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_ln = full_model.bert.emb_ln
emb_drop = full_model.bert.emb_drop
# ------------------------------------------------------------------
# 2. Symbolic token list ------------------------------------------
# ------------------------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>"
]
# Sanity-check: every role must be known by the tokenizer
missing = [t for t in SYMBOLIC_ROLES
if tokenizer.convert_tokens_to_ids(t) == tokenizer.unk_token_id]
if missing:
raise RuntimeError(f"Tokenizer is missing special tokens: {missing}")
# ------------------------------------------------------------------
# 3. Encoder-only inference util ----------------------------------
# ------------------------------------------------------------------
@spaces.GPU
def encode_and_trace(text: str, selected_roles: list[str]):
with torch.no_grad():
batch = tokenizer(text, return_tensors="pt").to("cuda")
ids, mask = batch.input_ids, batch.attention_mask
x = emb_drop(emb_ln(embeddings(ids)))
ext_mask = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
enc = encoder(x, attention_mask=ext_mask) # (1, S, H)
want = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}
keep = torch.tensor([tid in want for tid in ids[0]], device=enc.device)
found = [tokenizer.convert_ids_to_tokens([tid])[0] for tid in ids[0] if tid in want]
if keep.any():
vec = enc[0][keep].mean(0)
norm = f"{vec.norm().item():.4f}"
else:
norm = "0.0000"
return {
"Symbolic Tokens": ", ".join(found) or "(none)",
"Mean Norm": norm,
"Token Count": int(keep.sum().item()),
}
# ------------------------------------------------------------------
# 4. Gradio UI -----------------------------------------------------
# ------------------------------------------------------------------
def build_interface():
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
gr.Markdown("## 🧠 Symbolic Encoder Inspector")
with gr.Row():
with gr.Column():
txt = gr.Textbox(label="Input with Symbolic Tokens", lines=3)
chk = gr.CheckboxGroup(choices=SYMBOLIC_ROLES, label="Trace these roles")
btn = gr.Button("Encode & Trace")
with gr.Column():
out_tok = gr.Textbox(label="Symbolic Tokens Found")
out_norm = gr.Textbox(label="Mean Norm")
out_cnt = gr.Textbox(label="Token Count")
btn.click(encode_and_trace, [txt, chk], [out_tok, out_norm, out_cnt])
return demo
if __name__ == "__main__":
build_interface().launch()