gradiotest / app.py
Abrahamau's picture
Update app.py
abc4ec6 verified
raw
history blame
3.41 kB
import torch
import os
import random
import gradio as gr
from transformers import pipeline
import base64
from datasets import load_dataset
from diffusers import DiffusionPipeline
from huggingface_hub import login
import numpy as np
def guessanImage(model, image):
imgclassifier = pipeline("image-classification", model=model)
if image is not None:
description = imgclassifier(image)
return description
def guessanAge(model, image):
imgclassifier = pipeline("image-classification", model=model)
if image is not None:
description = imgclassifier(image)
return description
def text2speech(model, text, voice):
print(voice)
if len(text) > 0:
synthesiser = pipeline("text-to-speech", model=model)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[voice]["xvector"]).unsqueeze(0)
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
audio_data_16bit = (audio_data * 32767).astype(np.int16)
return speech["sampling_rate"], audio_data_16bit
def ImageGenFromText(text, model):
api_key = os.getenv("fluxauthtoken")
login(token=api_key)
if len(text) > 0:
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
seed = random.randint(0, MAX_SEED)
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=dtype).to(device)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = text,
width = 512,
height = 512,
num_inference_steps = 4,
generator = generator,
guidance_scale=0.0
).images[0]
print(image)
return image
radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], value="microsoft/resnet-50", label="Select a Classifier", info="Image Classifier")
tab1 = gr.Interface(
fn=guessanImage,
inputs=[radio1, gr.Image(type="pil")],
outputs=["text"],
)
radio2 = gr.Radio(["nateraw/vit-age-classifier"], value="nateraw/vit-age-classifier", label="Select an Age Classifier", info="Age Classifier")
tab2 = gr.Interface(
fn=guessanAge,
inputs=[radio2, gr.Image(type="pil")],
outputs=["text"],
)
textbox = gr.Textbox(value="good morning pineapple! looking very good very nice!")
radio3 = gr.Radio(["microsoft/speecht5_tts"], value="microsoft/speecht5_tts", label="Select an tts", info="Age Classifier")
radio3_1 = gr.Radio([("Scottish male (awb)", 0), ("US male (bdl)", 1138), ("US female (clb)", 2271), ("Canadian male (jmk)",3403), ("Indian male (ksp)", 4535), ("US male (rms)", 5667), ("US female (slt)", 6799)], value=4535)
tab3 = gr.Interface(
fn=text2speech,
inputs=[radio3, textbox, radio3_1],
outputs=["audio"],
)
radio3 = gr.Radio(["black-forest-labs/FLUX.1-schnell"], value="black-forest-labs/FLUX.1-schnell", label="Select", info="text to image")
tab4 = gr.Interface(
fn=ImageGenFromText,
inputs=["text", "model"],
outputs=["image"],
)
demo = gr.TabbedInterface([tab1, tab2, tab3, tab4], ["tab1", "tab2", "tab3", "tab4"])
demo.launch()