Abrahamau commited on
Commit
abc4ec6
·
verified ·
1 Parent(s): f5044e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -2
app.py CHANGED
@@ -32,9 +32,31 @@ def text2speech(model, text, voice):
32
  speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
33
  audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
34
  audio_data_16bit = (audio_data * 32767).astype(np.int16)
35
-
36
  return speech["sampling_rate"], audio_data_16bit
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], value="microsoft/resnet-50", label="Select a Classifier", info="Image Classifier")
39
  tab1 = gr.Interface(
40
  fn=guessanImage,
@@ -57,5 +79,12 @@ tab3 = gr.Interface(
57
  outputs=["audio"],
58
  )
59
 
60
- demo = gr.TabbedInterface([tab1, tab2, tab3], ["tab1", "tab2", "tab3"])
 
 
 
 
 
 
 
61
  demo.launch()
 
32
  speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
33
  audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
34
  audio_data_16bit = (audio_data * 32767).astype(np.int16)
 
35
  return speech["sampling_rate"], audio_data_16bit
36
 
37
+ def ImageGenFromText(text, model):
38
+ api_key = os.getenv("fluxauthtoken")
39
+ login(token=api_key)
40
+
41
+ if len(text) > 0:
42
+ dtype = torch.bfloat16
43
+ device = "cuda" if torch.cuda.is_available() else "cpu"
44
+ MAX_SEED = np.iinfo(np.int32).max
45
+ seed = random.randint(0, MAX_SEED)
46
+ pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=dtype).to(device)
47
+ generator = torch.Generator().manual_seed(seed)
48
+ image = pipe(
49
+ prompt = text,
50
+ width = 512,
51
+ height = 512,
52
+ num_inference_steps = 4,
53
+ generator = generator,
54
+ guidance_scale=0.0
55
+ ).images[0]
56
+ print(image)
57
+ return image
58
+
59
+
60
  radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], value="microsoft/resnet-50", label="Select a Classifier", info="Image Classifier")
61
  tab1 = gr.Interface(
62
  fn=guessanImage,
 
79
  outputs=["audio"],
80
  )
81
 
82
+ radio3 = gr.Radio(["black-forest-labs/FLUX.1-schnell"], value="black-forest-labs/FLUX.1-schnell", label="Select", info="text to image")
83
+ tab4 = gr.Interface(
84
+ fn=ImageGenFromText,
85
+ inputs=["text", "model"],
86
+ outputs=["image"],
87
+ )
88
+
89
+ demo = gr.TabbedInterface([tab1, tab2, tab3, tab4], ["tab1", "tab2", "tab3", "tab4"])
90
  demo.launch()