Abinivesh's picture
Update app.py
7e1de43 verified
raw
history blame
3.63 kB
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
import asyncio
import os
from threading import RLock
from pathlib import Path
# Create a lock for thread safety
lock = RLock()
# Load Hugging Face token from environment variable (if available)
HF_TOKEN = os.getenv("HF_TOKEN")
# Function to load models
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load:
try:
print(f"Loading model: {model}")
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
models_load[model] = m
except Exception as e:
print(f"Error loading model {model}: {e}")
models_load[model] = gr.Interface(lambda: None, ['text'], ['image'])
print("Loading models...")
load_fn(models)
print("Models loaded successfully.")
num_models = 1
starting_seed = randint(1941, 2024)
MAX_SEED = 3999999999
MAX_SEED = int(MAX_SEED)
inference_timeout = 600
def extend_choices(choices):
return choices[:num_models] + ['NA'] * (num_models - len(choices))
def update_imgbox(choices):
choices_extended = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended]
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
if model_str not in models_load:
return None
kwargs = {"seed": seed}
try:
print(f"Running inference for model: {model_str} with prompt: '{prompt}'")
result = await asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN)
if result:
with lock:
png_path = "image.png"
result.save(png_path)
return str(Path(png_path).resolve())
except Exception as e:
print(f"Error during inference for {model_str}: {e}")
return None
def gen_fnseed(model_str, prompt, seed=1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
except Exception as e:
print(f"Error generating image for {model_str}: {e}")
result = None
finally:
loop.close()
return result
print("Creating Gradio interface...")
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<center><h1>Compare-6</h1></center>")
with gr.Tab('Compare-6'):
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate up to 6 images')
seed = gr.Slider(label="Seed (0 to MAX)", minimum=0, maximum=MAX_SEED, value=starting_seed)
seed_rand = gr.Button("Randomize Seed 🎲")
seed_rand.click(randomize_seed, None, [seed], queue=False)
output = [gr.Image(label=m) for m in models[:num_models]]
current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]]
for m, o in zip(current_models, output):
gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o], queue=False)
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models')
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
demo.queue(default_concurrency_limit=50, max_size=100)
demo.launch(show_api=False)