import gradio as gr from random import randint from all_models import models from externalmod import gr_Interface_load, randomize_seed import asyncio import os from threading import RLock from pathlib import Path # Create a lock for thread safety lock = RLock() # Load Hugging Face token from environment variable (if available) HF_TOKEN = os.getenv("HF_TOKEN") # Function to load models def load_fn(models): global models_load models_load = {} for model in models: if model not in models_load: try: print(f"Loading model: {model}") m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) models_load[model] = m except Exception as e: print(f"Error loading model {model}: {e}") models_load[model] = gr.Interface(lambda: None, ['text'], ['image']) print("Loading models...") load_fn(models) print("Models loaded successfully.") num_models = 1 starting_seed = randint(1941, 2024) MAX_SEED = 3999999999 MAX_SEED = int(MAX_SEED) inference_timeout = 600 def extend_choices(choices): return choices[:num_models] + ['NA'] * (num_models - len(choices)) def update_imgbox(choices): choices_extended = extend_choices(choices) return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended] async def infer(model_str, prompt, seed=1, timeout=inference_timeout): if model_str not in models_load: return None kwargs = {"seed": seed} try: print(f"Running inference for model: {model_str} with prompt: '{prompt}'") result = await asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN) if result: with lock: png_path = "image.png" result.save(png_path) return str(Path(png_path).resolve()) except Exception as e: print(f"Error during inference for {model_str}: {e}") return None def gen_fnseed(model_str, prompt, seed=1): if model_str == 'NA': return None try: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout)) except Exception as e: print(f"Error generating image for {model_str}: {e}") result = None finally: loop.close() return result print("Creating Gradio interface...") with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: gr.HTML("

Compare-6

") with gr.Tab('Compare-6'): txt_input = gr.Textbox(label='Your prompt:', lines=4) gen_button = gr.Button('Generate up to 6 images') seed = gr.Slider(label="Seed (0 to MAX)", minimum=0, maximum=MAX_SEED, value=starting_seed) seed_rand = gr.Button("Randomize Seed 🎲") seed_rand.click(randomize_seed, None, [seed], queue=False) output = [gr.Image(label=m) for m in models[:num_models]] current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]] for m, o in zip(current_models, output): gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o], queue=False) with gr.Accordion('Model selection'): model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models') model_choice.change(update_imgbox, model_choice, output) model_choice.change(extend_choices, model_choice, current_models) demo.queue(default_concurrency_limit=50, max_size=100) demo.launch(show_api=False)