Spaces:
Runtime error
Runtime error
File size: 6,848 Bytes
aac338f 0824d60 aac338f c61580a 0824d60 4ff15b7 c61580a 4ff15b7 aac338f c61580a 0824d60 4ff15b7 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 aac338f c61580a 0824d60 c61580a 0824d60 4ff15b7 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 4ff15b7 0824d60 4ff15b7 bbc9212 0824d60 c61580a 0824d60 c61580a 0824d60 4ff15b7 0824d60 c61580a bbc9212 c61580a 0824d60 bbc9212 c61580a 4ff15b7 0824d60 c61580a 0824d60 4ff15b7 0824d60 4ff15b7 0824d60 c61580a 0824d60 c61580a 0824d60 c61580a 0824d60 ba9775e c61580a aac338f 0824d60 4ff15b7 0824d60 4ff15b7 e7c4130 0824d60 c61580a 0824d60 c61580a 4ff15b7 0824d60 4ff15b7 0824d60 4ff15b7 aac338f c61580a 0824d60 c61580a 4ff15b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
import asyncio
import os
from threading import RLock
# Create a lock to ensure thread safety when accessing shared resources
lock = RLock()
# Load Hugging Face token from environment variable, if available
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# Function to load all models specified in the 'models' list
def load_fn(models):
global models_load
models_load = {}
# Iterate through all models to load them
for model in models:
if model not in models_load.keys():
try:
print(f"Attempting to load model: {model}")
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
print(f"Successfully loaded model: {model}")
except Exception as error:
print(f"Error loading model {model}: {error}")
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
print("Loading models...")
load_fn(models)
print("Models loaded successfully.")
num_models = 6
# Set the default models to use for inference
default_models = models[:num_models]
inference_timeout = 600
MAX_SEED = 3999999999
starting_seed = randint(1941, 2024)
print(f"Starting seed: {starting_seed}")
# Extend the choices list to ensure it contains 'num_models' elements
def extend_choices(choices):
print(f"Extending choices: {choices}")
extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
print(f"Extended choices: {extended}")
return extended
# Update the image boxes based on selected models
def update_imgbox(choices):
print(f"Updating image boxes with choices: {choices}")
choices_plus = extend_choices(choices[:num_models])
imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
print(f"Updated image boxes: {imgboxes}")
return imgboxes
# Asynchronous function to perform inference on a given model
async def infer(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium", timeout=inference_timeout):
from pathlib import Path
kwargs = {}
noise = ""
kwargs["seed"] = seed
kwargs["batch_size"] = batch_size
kwargs["priority"] = priority
print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}, batch_size: {batch_size}, priority: {priority}")
task = asyncio.create_task(
asyncio.to_thread(
models_load[model_str].fn,
prompt=f'{prompt} {noise}',
**kwargs,
token=HF_TOKEN
)
)
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
print(f"Inference completed for model: {model_str}")
except (Exception, asyncio.TimeoutError) as e:
print(f"Error during inference for model {model_str}: {e}")
if not task.done():
task.cancel()
print(f"Task cancelled for model: {model_str}")
result = None
if task.done() and result is not None:
with lock:
png_path = f"image.{output_format.lower()}"
result.save(png_path)
image = str(Path(png_path).resolve())
print(f"Result saved as image: {image}")
return image
print(f"No result for model: {model_str}")
return None
# Function to generate an image based on the given model, prompt, and seed
def gen_fnseed(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium"):
if model_str == 'NA':
print(f"Model is 'NA', skipping generation.")
return None
try:
print(f"Generating image for model: {model_str} with prompt: '{prompt}', seed: {seed}, batch_size: {batch_size}, priority: {priority}")
loop = asyncio.new_event_loop()
result = loop.run_until_complete(
infer(model_str, prompt, seed, batch_size=batch_size, output_format=output_format, priority=priority)
)
except (Exception, asyncio.CancelledError) as e:
print(f"Error during generation for model {model_str}: {e}")
result = None
finally:
loop.close()
print(f"Event loop closed for model: {model_str}")
return result
# Create the Gradio Blocks interface with a custom theme
print("Creating Gradio interface...")
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<center><h1>Multi-models-prompt-to-image-generation</h1></center>")
with gr.Tab('Compare-6'):
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
with gr.Row():
seed = gr.Slider(label="Seed (max 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
seed_rand.click(randomize_seed, None, [seed], queue=False)
# Add batch size slider
batch_size_slider = gr.Slider(label="Batch Size", minimum=1, maximum=10, step=1, value=1)
output_format_dropdown = gr.Dropdown(["PNG", "JPEG"], label="Output Format", value="PNG")
priority_dropdown = gr.Dropdown(["low", "medium", "high"], label="Model Priority", value="medium")
with gr.Row():
output = [gr.Image(label=m, min_width=480) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
print(f"Setting up generation event for model: {m.value}")
gen_event = gr.on(
triggers=[gen_button.click, txt_input.submit],
fn=gen_fnseed,
inputs=[m, txt_input, seed, batch_size_slider, output_format_dropdown, priority_dropdown],
outputs=[o],
concurrency_limit=None,
queue=False
)
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models!', value=default_models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
with gr.Row():
gr.HTML("<p>Additional UI elements can go here</p>")
print("Setting up queue...")
demo.queue(default_concurrency_limit=200, max_size=200)
print("Launching Gradio interface...")
demo.launch(show_api=False, max_threads=400)
print("Gradio interface launched successfully.")
|