Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
from random import randint
|
3 |
from all_models import models
|
4 |
-
|
5 |
from externalmod import gr_Interface_load, randomize_seed
|
6 |
-
|
7 |
import asyncio
|
8 |
import os
|
9 |
from threading import RLock
|
10 |
|
11 |
# Create a lock to ensure thread safety when accessing shared resources
|
12 |
lock = RLock()
|
|
|
13 |
# Load Hugging Face token from environment variable, if available
|
14 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
15 |
|
16 |
# Function to load all models specified in the 'models' list
|
17 |
def load_fn(models):
|
18 |
global models_load
|
19 |
models_load = {}
|
20 |
-
|
21 |
# Iterate through all models to load them
|
22 |
for model in models:
|
23 |
if model not in models_load.keys():
|
24 |
try:
|
25 |
-
# Log model loading attempt
|
26 |
print(f"Attempting to load model: {model}")
|
27 |
-
# Load model interface using externalmod function
|
28 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
29 |
print(f"Successfully loaded model: {model}")
|
30 |
except Exception as error:
|
31 |
-
# In case of an error, print it and create a placeholder interface
|
32 |
print(f"Error loading model {model}: {error}")
|
33 |
m = gr.Interface(lambda: None, ['text'], ['image'])
|
34 |
-
# Update the models_load dictionary with the loaded model
|
35 |
models_load.update({model: m})
|
36 |
|
37 |
-
# Load all models defined in the 'models' list
|
38 |
print("Loading models...")
|
39 |
load_fn(models)
|
40 |
print("Models loaded successfully.")
|
41 |
|
42 |
-
num_models =
|
43 |
|
44 |
# Set the default models to use for inference
|
45 |
default_models = models[:num_models]
|
46 |
inference_timeout = 600
|
47 |
MAX_SEED = 3999999999
|
48 |
-
# Generate a starting seed randomly between 1941 and 2024
|
49 |
starting_seed = randint(1941, 2024)
|
50 |
print(f"Starting seed: {starting_seed}")
|
51 |
|
@@ -65,31 +58,35 @@ def update_imgbox(choices):
|
|
65 |
return imgboxes
|
66 |
|
67 |
# Asynchronous function to perform inference on a given model
|
68 |
-
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
69 |
from pathlib import Path
|
70 |
kwargs = {}
|
71 |
noise = ""
|
72 |
kwargs["seed"] = seed
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
try:
|
79 |
-
# Wait for the task to complete within the specified timeout
|
80 |
result = await asyncio.wait_for(task, timeout=timeout)
|
81 |
print(f"Inference completed for model: {model_str}")
|
82 |
except (Exception, asyncio.TimeoutError) as e:
|
83 |
-
# Handle any exceptions or timeout errors
|
84 |
print(f"Error during inference for model {model_str}: {e}")
|
85 |
if not task.done():
|
86 |
task.cancel()
|
87 |
print(f"Task cancelled for model: {model_str}")
|
88 |
result = None
|
89 |
-
# If the task completed successfully, save the result as an image
|
90 |
if task.done() and result is not None:
|
91 |
with lock:
|
92 |
-
png_path = "image.
|
93 |
result.save(png_path)
|
94 |
image = str(Path(png_path).resolve())
|
95 |
print(f"Result saved as image: {image}")
|
@@ -98,21 +95,20 @@ async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
|
98 |
return None
|
99 |
|
100 |
# Function to generate an image based on the given model, prompt, and seed
|
101 |
-
def gen_fnseed(model_str, prompt, seed=1):
|
102 |
if model_str == 'NA':
|
103 |
print(f"Model is 'NA', skipping generation.")
|
104 |
return None
|
105 |
try:
|
106 |
-
|
107 |
-
print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
|
108 |
loop = asyncio.new_event_loop()
|
109 |
-
result = loop.run_until_complete(
|
|
|
|
|
110 |
except (Exception, asyncio.CancelledError) as e:
|
111 |
-
# Handle any exceptions or cancelled tasks
|
112 |
print(f"Error during generation for model {model_str}: {e}")
|
113 |
result = None
|
114 |
finally:
|
115 |
-
# Close the event loop
|
116 |
loop.close()
|
117 |
print(f"Event loop closed for model: {model_str}")
|
118 |
return result
|
@@ -122,51 +118,41 @@ print("Creating Gradio interface...")
|
|
122 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
123 |
gr.HTML("<center><h1>Multi-models-prompt-to-image-generation</h1></center>")
|
124 |
with gr.Tab('Compare-6'):
|
125 |
-
# Text input for user prompt
|
126 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
127 |
-
# Button to generate images
|
128 |
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
|
129 |
with gr.Row():
|
130 |
-
|
131 |
-
|
132 |
-
# Button to randomize the seed
|
133 |
-
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
|
134 |
-
# Set up click event to randomize the seed
|
135 |
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
136 |
-
|
137 |
-
#
|
138 |
-
|
139 |
-
|
|
|
140 |
|
141 |
with gr.Row():
|
142 |
-
# Create image output components for each model
|
143 |
output = [gr.Image(label=m, min_width=480) for m in default_models]
|
144 |
-
# Create hidden textboxes to store the current models
|
145 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
146 |
|
147 |
-
# Set up generation events for each model and output image
|
148 |
for m, o in zip(current_models, output):
|
149 |
print(f"Setting up generation event for model: {m.value}")
|
150 |
-
gen_event = gr.on(
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
with gr.Accordion('Model selection'):
|
156 |
-
|
157 |
-
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
|
158 |
-
# Update image boxes and current models based on model selection
|
159 |
model_choice.change(update_imgbox, model_choice, output)
|
160 |
model_choice.change(extend_choices, model_choice, current_models)
|
161 |
-
print("Model selection setup complete.")
|
162 |
with gr.Row():
|
163 |
-
|
164 |
-
gr.HTML(
|
165 |
-
)
|
166 |
|
167 |
-
# Queue settings for handling multiple concurrent requests
|
168 |
print("Setting up queue...")
|
169 |
demo.queue(default_concurrency_limit=200, max_size=200)
|
170 |
print("Launching Gradio interface...")
|
171 |
demo.launch(show_api=False, max_threads=400)
|
172 |
-
print("Gradio interface launched successfully.")
|
|
|
1 |
import gradio as gr
|
2 |
from random import randint
|
3 |
from all_models import models
|
|
|
4 |
from externalmod import gr_Interface_load, randomize_seed
|
|
|
5 |
import asyncio
|
6 |
import os
|
7 |
from threading import RLock
|
8 |
|
9 |
# Create a lock to ensure thread safety when accessing shared resources
|
10 |
lock = RLock()
|
11 |
+
|
12 |
# Load Hugging Face token from environment variable, if available
|
13 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
14 |
|
15 |
# Function to load all models specified in the 'models' list
|
16 |
def load_fn(models):
|
17 |
global models_load
|
18 |
models_load = {}
|
19 |
+
|
20 |
# Iterate through all models to load them
|
21 |
for model in models:
|
22 |
if model not in models_load.keys():
|
23 |
try:
|
|
|
24 |
print(f"Attempting to load model: {model}")
|
|
|
25 |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
26 |
print(f"Successfully loaded model: {model}")
|
27 |
except Exception as error:
|
|
|
28 |
print(f"Error loading model {model}: {error}")
|
29 |
m = gr.Interface(lambda: None, ['text'], ['image'])
|
|
|
30 |
models_load.update({model: m})
|
31 |
|
|
|
32 |
print("Loading models...")
|
33 |
load_fn(models)
|
34 |
print("Models loaded successfully.")
|
35 |
|
36 |
+
num_models = 6
|
37 |
|
38 |
# Set the default models to use for inference
|
39 |
default_models = models[:num_models]
|
40 |
inference_timeout = 600
|
41 |
MAX_SEED = 3999999999
|
|
|
42 |
starting_seed = randint(1941, 2024)
|
43 |
print(f"Starting seed: {starting_seed}")
|
44 |
|
|
|
58 |
return imgboxes
|
59 |
|
60 |
# Asynchronous function to perform inference on a given model
|
61 |
+
async def infer(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium", timeout=inference_timeout):
|
62 |
from pathlib import Path
|
63 |
kwargs = {}
|
64 |
noise = ""
|
65 |
kwargs["seed"] = seed
|
66 |
+
kwargs["batch_size"] = batch_size
|
67 |
+
kwargs["priority"] = priority
|
68 |
+
print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}, batch_size: {batch_size}, priority: {priority}")
|
69 |
+
task = asyncio.create_task(
|
70 |
+
asyncio.to_thread(
|
71 |
+
models_load[model_str].fn,
|
72 |
+
prompt=f'{prompt} {noise}',
|
73 |
+
**kwargs,
|
74 |
+
token=HF_TOKEN
|
75 |
+
)
|
76 |
+
)
|
77 |
+
await asyncio.sleep(0)
|
78 |
try:
|
|
|
79 |
result = await asyncio.wait_for(task, timeout=timeout)
|
80 |
print(f"Inference completed for model: {model_str}")
|
81 |
except (Exception, asyncio.TimeoutError) as e:
|
|
|
82 |
print(f"Error during inference for model {model_str}: {e}")
|
83 |
if not task.done():
|
84 |
task.cancel()
|
85 |
print(f"Task cancelled for model: {model_str}")
|
86 |
result = None
|
|
|
87 |
if task.done() and result is not None:
|
88 |
with lock:
|
89 |
+
png_path = f"image.{output_format.lower()}"
|
90 |
result.save(png_path)
|
91 |
image = str(Path(png_path).resolve())
|
92 |
print(f"Result saved as image: {image}")
|
|
|
95 |
return None
|
96 |
|
97 |
# Function to generate an image based on the given model, prompt, and seed
|
98 |
+
def gen_fnseed(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium"):
|
99 |
if model_str == 'NA':
|
100 |
print(f"Model is 'NA', skipping generation.")
|
101 |
return None
|
102 |
try:
|
103 |
+
print(f"Generating image for model: {model_str} with prompt: '{prompt}', seed: {seed}, batch_size: {batch_size}, priority: {priority}")
|
|
|
104 |
loop = asyncio.new_event_loop()
|
105 |
+
result = loop.run_until_complete(
|
106 |
+
infer(model_str, prompt, seed, batch_size=batch_size, output_format=output_format, priority=priority)
|
107 |
+
)
|
108 |
except (Exception, asyncio.CancelledError) as e:
|
|
|
109 |
print(f"Error during generation for model {model_str}: {e}")
|
110 |
result = None
|
111 |
finally:
|
|
|
112 |
loop.close()
|
113 |
print(f"Event loop closed for model: {model_str}")
|
114 |
return result
|
|
|
118 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
119 |
gr.HTML("<center><h1>Multi-models-prompt-to-image-generation</h1></center>")
|
120 |
with gr.Tab('Compare-6'):
|
|
|
121 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
|
|
122 |
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
|
123 |
with gr.Row():
|
124 |
+
seed = gr.Slider(label="Seed (max 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
|
125 |
+
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
|
|
|
|
|
|
|
126 |
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
127 |
+
|
128 |
+
# Add batch size slider
|
129 |
+
batch_size_slider = gr.Slider(label="Batch Size", minimum=1, maximum=10, step=1, value=1)
|
130 |
+
output_format_dropdown = gr.Dropdown(["PNG", "JPEG"], label="Output Format", value="PNG")
|
131 |
+
priority_dropdown = gr.Dropdown(["low", "medium", "high"], label="Model Priority", value="medium")
|
132 |
|
133 |
with gr.Row():
|
|
|
134 |
output = [gr.Image(label=m, min_width=480) for m in default_models]
|
|
|
135 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
136 |
|
|
|
137 |
for m, o in zip(current_models, output):
|
138 |
print(f"Setting up generation event for model: {m.value}")
|
139 |
+
gen_event = gr.on(
|
140 |
+
triggers=[gen_button.click, txt_input.submit],
|
141 |
+
fn=gen_fnseed,
|
142 |
+
inputs=[m, txt_input, seed, batch_size_slider, output_format_dropdown, priority_dropdown],
|
143 |
+
outputs=[o],
|
144 |
+
concurrency_limit=None,
|
145 |
+
queue=False
|
146 |
+
)
|
147 |
with gr.Accordion('Model selection'):
|
148 |
+
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models!', value=default_models, interactive=True)
|
|
|
|
|
149 |
model_choice.change(update_imgbox, model_choice, output)
|
150 |
model_choice.change(extend_choices, model_choice, current_models)
|
|
|
151 |
with gr.Row():
|
152 |
+
gr.HTML("<p>Additional UI elements can go here</p>")
|
|
|
|
|
153 |
|
|
|
154 |
print("Setting up queue...")
|
155 |
demo.queue(default_concurrency_limit=200, max_size=200)
|
156 |
print("Launching Gradio interface...")
|
157 |
demo.launch(show_api=False, max_threads=400)
|
158 |
+
print("Gradio interface launched successfully.")
|