Abinivesh commited on
Commit
4ff15b7
·
verified ·
1 Parent(s): 0101892

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -55
app.py CHANGED
@@ -1,51 +1,44 @@
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
4
-
5
  from externalmod import gr_Interface_load, randomize_seed
6
-
7
  import asyncio
8
  import os
9
  from threading import RLock
10
 
11
  # Create a lock to ensure thread safety when accessing shared resources
12
  lock = RLock()
 
13
  # Load Hugging Face token from environment variable, if available
14
- HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
15
 
16
  # Function to load all models specified in the 'models' list
17
  def load_fn(models):
18
  global models_load
19
  models_load = {}
20
-
21
  # Iterate through all models to load them
22
  for model in models:
23
  if model not in models_load.keys():
24
  try:
25
- # Log model loading attempt
26
  print(f"Attempting to load model: {model}")
27
- # Load model interface using externalmod function
28
  m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
29
  print(f"Successfully loaded model: {model}")
30
  except Exception as error:
31
- # In case of an error, print it and create a placeholder interface
32
  print(f"Error loading model {model}: {error}")
33
  m = gr.Interface(lambda: None, ['text'], ['image'])
34
- # Update the models_load dictionary with the loaded model
35
  models_load.update({model: m})
36
 
37
- # Load all models defined in the 'models' list
38
  print("Loading models...")
39
  load_fn(models)
40
  print("Models loaded successfully.")
41
 
42
- num_models = 19
43
 
44
  # Set the default models to use for inference
45
  default_models = models[:num_models]
46
  inference_timeout = 600
47
  MAX_SEED = 3999999999
48
- # Generate a starting seed randomly between 1941 and 2024
49
  starting_seed = randint(1941, 2024)
50
  print(f"Starting seed: {starting_seed}")
51
 
@@ -65,31 +58,35 @@ def update_imgbox(choices):
65
  return imgboxes
66
 
67
  # Asynchronous function to perform inference on a given model
68
- async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
69
  from pathlib import Path
70
  kwargs = {}
71
  noise = ""
72
  kwargs["seed"] = seed
73
- # Create an asynchronous task to run the model inference
74
- print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
75
- task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
76
- prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
77
- await asyncio.sleep(0) # Allow other tasks to run
 
 
 
 
 
 
 
78
  try:
79
- # Wait for the task to complete within the specified timeout
80
  result = await asyncio.wait_for(task, timeout=timeout)
81
  print(f"Inference completed for model: {model_str}")
82
  except (Exception, asyncio.TimeoutError) as e:
83
- # Handle any exceptions or timeout errors
84
  print(f"Error during inference for model {model_str}: {e}")
85
  if not task.done():
86
  task.cancel()
87
  print(f"Task cancelled for model: {model_str}")
88
  result = None
89
- # If the task completed successfully, save the result as an image
90
  if task.done() and result is not None:
91
  with lock:
92
- png_path = "image.png"
93
  result.save(png_path)
94
  image = str(Path(png_path).resolve())
95
  print(f"Result saved as image: {image}")
@@ -98,21 +95,20 @@ async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
98
  return None
99
 
100
  # Function to generate an image based on the given model, prompt, and seed
101
- def gen_fnseed(model_str, prompt, seed=1):
102
  if model_str == 'NA':
103
  print(f"Model is 'NA', skipping generation.")
104
  return None
105
  try:
106
- # Create a new event loop to run the asynchronous inference function
107
- print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
108
  loop = asyncio.new_event_loop()
109
- result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
 
 
110
  except (Exception, asyncio.CancelledError) as e:
111
- # Handle any exceptions or cancelled tasks
112
  print(f"Error during generation for model {model_str}: {e}")
113
  result = None
114
  finally:
115
- # Close the event loop
116
  loop.close()
117
  print(f"Event loop closed for model: {model_str}")
118
  return result
@@ -122,51 +118,41 @@ print("Creating Gradio interface...")
122
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
123
  gr.HTML("<center><h1>Multi-models-prompt-to-image-generation</h1></center>")
124
  with gr.Tab('Compare-6'):
125
- # Text input for user prompt
126
  txt_input = gr.Textbox(label='Your prompt:', lines=4)
127
- # Button to generate images
128
  gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
129
  with gr.Row():
130
- # Slider to select a seed for reproducibility
131
- seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
132
- # Button to randomize the seed
133
- seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
134
- # Set up click event to randomize the seed
135
  seed_rand.click(randomize_seed, None, [seed], queue=False)
136
- print("Seed randomization button set up.")
137
- # Button click to start generation
138
- gen_button.click(lambda s: gr.update(interactive=True), None)
139
- print("Generation button set up.")
 
140
 
141
  with gr.Row():
142
- # Create image output components for each model
143
  output = [gr.Image(label=m, min_width=480) for m in default_models]
144
- # Create hidden textboxes to store the current models
145
  current_models = [gr.Textbox(m, visible=False) for m in default_models]
146
 
147
- # Set up generation events for each model and output image
148
  for m, o in zip(current_models, output):
149
  print(f"Setting up generation event for model: {m.value}")
150
- gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
151
- inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
152
- # The commented stop button could be used to cancel the generation event
153
- #stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
154
- # Accordion to allow model selection
 
 
 
155
  with gr.Accordion('Model selection'):
156
- # Checkbox group to select up to 'num_models' different models
157
- model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
158
- # Update image boxes and current models based on model selection
159
  model_choice.change(update_imgbox, model_choice, output)
160
  model_choice.change(extend_choices, model_choice, current_models)
161
- print("Model selection setup complete.")
162
  with gr.Row():
163
- # Placeholder HTML to add additional UI elements if needed
164
- gr.HTML(
165
- )
166
 
167
- # Queue settings for handling multiple concurrent requests
168
  print("Setting up queue...")
169
  demo.queue(default_concurrency_limit=200, max_size=200)
170
  print("Launching Gradio interface...")
171
  demo.launch(show_api=False, max_threads=400)
172
- print("Gradio interface launched successfully.")
 
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
 
4
  from externalmod import gr_Interface_load, randomize_seed
 
5
  import asyncio
6
  import os
7
  from threading import RLock
8
 
9
  # Create a lock to ensure thread safety when accessing shared resources
10
  lock = RLock()
11
+
12
  # Load Hugging Face token from environment variable, if available
13
+ HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
14
 
15
  # Function to load all models specified in the 'models' list
16
  def load_fn(models):
17
  global models_load
18
  models_load = {}
19
+
20
  # Iterate through all models to load them
21
  for model in models:
22
  if model not in models_load.keys():
23
  try:
 
24
  print(f"Attempting to load model: {model}")
 
25
  m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
26
  print(f"Successfully loaded model: {model}")
27
  except Exception as error:
 
28
  print(f"Error loading model {model}: {error}")
29
  m = gr.Interface(lambda: None, ['text'], ['image'])
 
30
  models_load.update({model: m})
31
 
 
32
  print("Loading models...")
33
  load_fn(models)
34
  print("Models loaded successfully.")
35
 
36
+ num_models = 6
37
 
38
  # Set the default models to use for inference
39
  default_models = models[:num_models]
40
  inference_timeout = 600
41
  MAX_SEED = 3999999999
 
42
  starting_seed = randint(1941, 2024)
43
  print(f"Starting seed: {starting_seed}")
44
 
 
58
  return imgboxes
59
 
60
  # Asynchronous function to perform inference on a given model
61
+ async def infer(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium", timeout=inference_timeout):
62
  from pathlib import Path
63
  kwargs = {}
64
  noise = ""
65
  kwargs["seed"] = seed
66
+ kwargs["batch_size"] = batch_size
67
+ kwargs["priority"] = priority
68
+ print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}, batch_size: {batch_size}, priority: {priority}")
69
+ task = asyncio.create_task(
70
+ asyncio.to_thread(
71
+ models_load[model_str].fn,
72
+ prompt=f'{prompt} {noise}',
73
+ **kwargs,
74
+ token=HF_TOKEN
75
+ )
76
+ )
77
+ await asyncio.sleep(0)
78
  try:
 
79
  result = await asyncio.wait_for(task, timeout=timeout)
80
  print(f"Inference completed for model: {model_str}")
81
  except (Exception, asyncio.TimeoutError) as e:
 
82
  print(f"Error during inference for model {model_str}: {e}")
83
  if not task.done():
84
  task.cancel()
85
  print(f"Task cancelled for model: {model_str}")
86
  result = None
 
87
  if task.done() and result is not None:
88
  with lock:
89
+ png_path = f"image.{output_format.lower()}"
90
  result.save(png_path)
91
  image = str(Path(png_path).resolve())
92
  print(f"Result saved as image: {image}")
 
95
  return None
96
 
97
  # Function to generate an image based on the given model, prompt, and seed
98
+ def gen_fnseed(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium"):
99
  if model_str == 'NA':
100
  print(f"Model is 'NA', skipping generation.")
101
  return None
102
  try:
103
+ print(f"Generating image for model: {model_str} with prompt: '{prompt}', seed: {seed}, batch_size: {batch_size}, priority: {priority}")
 
104
  loop = asyncio.new_event_loop()
105
+ result = loop.run_until_complete(
106
+ infer(model_str, prompt, seed, batch_size=batch_size, output_format=output_format, priority=priority)
107
+ )
108
  except (Exception, asyncio.CancelledError) as e:
 
109
  print(f"Error during generation for model {model_str}: {e}")
110
  result = None
111
  finally:
 
112
  loop.close()
113
  print(f"Event loop closed for model: {model_str}")
114
  return result
 
118
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
119
  gr.HTML("<center><h1>Multi-models-prompt-to-image-generation</h1></center>")
120
  with gr.Tab('Compare-6'):
 
121
  txt_input = gr.Textbox(label='Your prompt:', lines=4)
 
122
  gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
123
  with gr.Row():
124
+ seed = gr.Slider(label="Seed (max 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
125
+ seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
 
 
 
126
  seed_rand.click(randomize_seed, None, [seed], queue=False)
127
+
128
+ # Add batch size slider
129
+ batch_size_slider = gr.Slider(label="Batch Size", minimum=1, maximum=10, step=1, value=1)
130
+ output_format_dropdown = gr.Dropdown(["PNG", "JPEG"], label="Output Format", value="PNG")
131
+ priority_dropdown = gr.Dropdown(["low", "medium", "high"], label="Model Priority", value="medium")
132
 
133
  with gr.Row():
 
134
  output = [gr.Image(label=m, min_width=480) for m in default_models]
 
135
  current_models = [gr.Textbox(m, visible=False) for m in default_models]
136
 
 
137
  for m, o in zip(current_models, output):
138
  print(f"Setting up generation event for model: {m.value}")
139
+ gen_event = gr.on(
140
+ triggers=[gen_button.click, txt_input.submit],
141
+ fn=gen_fnseed,
142
+ inputs=[m, txt_input, seed, batch_size_slider, output_format_dropdown, priority_dropdown],
143
+ outputs=[o],
144
+ concurrency_limit=None,
145
+ queue=False
146
+ )
147
  with gr.Accordion('Model selection'):
148
+ model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models!', value=default_models, interactive=True)
 
 
149
  model_choice.change(update_imgbox, model_choice, output)
150
  model_choice.change(extend_choices, model_choice, current_models)
 
151
  with gr.Row():
152
+ gr.HTML("<p>Additional UI elements can go here</p>")
 
 
153
 
 
154
  print("Setting up queue...")
155
  demo.queue(default_concurrency_limit=200, max_size=200)
156
  print("Launching Gradio interface...")
157
  demo.launch(show_api=False, max_threads=400)
158
+ print("Gradio interface launched successfully.")