AbenzaFran's picture
now the ai message is not replaced by [Assistant reply streamed above] in the chat ui
6853d31
import os
import re
import io
import time
import json
import queue
import logging
from typing import Any, Generator, Optional, List, Dict, Tuple
from dataclasses import dataclass
import streamlit as st
from dotenv import load_dotenv
from PIL import Image
import openai
from langsmith.wrappers import wrap_openai
from langsmith import traceable
# ------------------------
# Configuration and Types
# ------------------------
@dataclass
class AppConfig:
"""Application configuration settings."""
page_title: str = "Solution Specifier A"
page_icon: str = "πŸ€–"
layout: str = "centered"
@dataclass
class Message:
"""Chat message structure."""
role: str
content: str
class StreamingError(Exception):
"""Custom exception for streaming-related errors."""
pass
# ------------------------
# Logging Configuration
# ------------------------
def setup_logging() -> logging.Logger:
"""Configure and return the application logger."""
logging.basicConfig(
format="[%(asctime)s] %(levelname)+8s: %(message)s",
level=logging.INFO,
)
return logging.getLogger(__name__)
logger = setup_logging()
# ------------------------
# Environment Setup
# ------------------------
class EnvironmentManager:
"""Manages environment variables and configuration."""
@staticmethod
def load_environment() -> Tuple[str, str]:
"""Load and validate environment variables."""
load_dotenv(override=True)
api_key = os.getenv("OPENAI_API_KEY")
assistant_id = os.getenv("ASSISTANT_ID_SOLUTION_SPECIFIER_A")
if not api_key or not assistant_id:
raise RuntimeError(
"Missing required environment variables. Please set "
"OPENAI_API_KEY and ASSISTANT_ID_SOLUTION_SPECIFIER_A"
)
return api_key, assistant_id
# ------------------------
# State Management
# ------------------------
class StateManager:
"""Manages Streamlit session state."""
@staticmethod
def initialize_state() -> None:
"""Initialize session state variables."""
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread" not in st.session_state:
st.session_state.thread = None
if "tool_requests" not in st.session_state:
st.session_state.tool_requests = queue.Queue()
if "run_stream" not in st.session_state:
st.session_state.run_stream = None
@staticmethod
def add_message(role: str, content: str) -> None:
"""Add a message to the conversation history."""
st.session_state.messages.append(Message(role=role, content=content))
# ------------------------
# Text Processing
# ------------------------
class TextProcessor:
"""Handles text processing and formatting."""
@staticmethod
def remove_citations(text: str) -> str:
"""Remove citation markers from text."""
pattern = r"【\d+†\w+】"
return re.sub(pattern, "πŸ“š", text)
# ------------------------
# Streaming Handler
# ------------------------
class StreamHandler:
"""Handles streaming of assistant responses."""
def __init__(self, client: Any):
self.client = client
self.text_processor = TextProcessor()
self.complete_response = []
def stream_data(self) -> Generator[Any, None, None]:
"""Stream data from the assistant run."""
st.toast("Thinking...", icon="πŸ€”")
content_produced = False
self.complete_response = [] # Reset for new stream
try:
for event in st.session_state.run_stream:
match event.event:
case "thread.message.delta":
yield from self._handle_message_delta(event, content_produced)
case "thread.run.requires_action":
yield from self._handle_action_request(event, content_produced)
case "thread.run.failed":
logger.error(f"Run failed: {event}")
raise StreamingError(f"Assistant run failed: {event}")
st.toast("Completed", icon="βœ…")
# Return the complete response for storage
return "".join(self.complete_response)
except Exception as e:
logger.error(f"Streaming error: {e}")
st.error(f"An error occurred while streaming: {str(e)}")
raise
def _handle_message_delta(self, event: Any, content_produced: bool) -> Generator[Any, None, None]:
"""Handle message delta events."""
content = event.data.delta.content[0]
match content.type:
case "text":
processed_text = self.text_processor.remove_citations(content.text.value)
self.complete_response.append(processed_text) # Store the chunk
yield processed_text
case "image_file":
image_content = io.BytesIO(self.client.files.content(content.image_file.file_id).read())
yield Image.open(image_content)
def _handle_action_request(self, event: Any, content_produced: bool) -> Generator[str, None, None]:
"""Handle action request events."""
logger.info(f"[Tool Request] {event}")
st.session_state.tool_requests.put(event)
if not content_produced:
yield "[Processing function call...]"
# ------------------------
# Tool Request Handler
# ------------------------
class ToolRequestHandler:
"""Handles tool requests from the assistant."""
@staticmethod
def handle_request(event: Any) -> Tuple[List[Dict[str, str]], str, str]:
"""Process tool requests and return outputs."""
st.toast("Processing function call...", icon="βš™οΈ")
tool_outputs = []
data = event.data
for tool_call in data.required_action.submit_tool_outputs.tool_calls:
output = ToolRequestHandler._process_tool_call(tool_call)
tool_outputs.append(output)
return tool_outputs, data.thread_id, data.id
@staticmethod
def _process_tool_call(tool_call: Any) -> Dict[str, str]:
"""Process individual tool calls."""
function_args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
match tool_call.function.name:
case "hello_world":
name = function_args.get("name", "anonymous")
output_val = f"Hello, {name}! This was from a local function."
case _:
output_val = json.dumps({"status": "error", "message": "Unknown function request."})
return {"tool_call_id": tool_call.id, "output": output_val}
# ------------------------
# Assistant Manager
# ------------------------
class AssistantManager:
"""Manages interactions with the OpenAI Assistant."""
def __init__(self, client: Any, assistant_id: str):
self.client = client
self.assistant_id = assistant_id
self.stream_handler = StreamHandler(client)
self.tool_handler = ToolRequestHandler()
@traceable
def generate_reply(self, user_input: str) -> str:
"""Generate and stream assistant's reply."""
# Ensure thread exists
if not st.session_state.thread:
st.session_state.thread = self.client.beta.threads.create()
# Add user message
self.client.beta.threads.messages.create(
thread_id=st.session_state.thread.id,
role="user",
content=user_input
)
complete_response = ""
# Stream initial response
with self.client.beta.threads.runs.stream(
thread_id=st.session_state.thread.id,
assistant_id=self.assistant_id,
) as run_stream:
complete_response = self._display_stream(run_stream)
# Handle any tool requests
self._process_tool_requests()
return complete_response
def _display_stream(self, run_stream: Any, create_context: bool = True) -> str:
"""Display streaming content."""
st.session_state.run_stream = run_stream
if create_context:
with st.chat_message("assistant"):
return st.write_stream(self.stream_handler.stream_data)
else:
return st.write_stream(self.stream_handler.stream_data)
def _process_tool_requests(self) -> None:
"""Process any pending tool requests."""
while not st.session_state.tool_requests.empty():
event = st.session_state.tool_requests.get()
tool_outputs, thread_id, run_id = self.tool_handler.handle_request(event)
with self.client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=thread_id,
run_id=run_id,
tool_outputs=tool_outputs
) as next_stream:
self._display_stream(next_stream, create_context=False)
# ------------------------
# Main Application
# ------------------------
class ChatApplication:
"""Main chat application class."""
def __init__(self):
self.config = AppConfig()
api_key, assistant_id = EnvironmentManager.load_environment()
# Initialize OpenAI client
openai_client = openai.Client(api_key=api_key)
self.client = wrap_openai(openai_client)
# Initialize components
self.state_manager = StateManager()
self.assistant_manager = AssistantManager(self.client, assistant_id)
def setup_page(self) -> None:
"""Configure the Streamlit page."""
st.set_page_config(
page_title=self.config.page_title,
page_icon=self.config.page_icon,
layout=self.config.layout
)
st.title(self.config.page_title)
def display_chat_history(self) -> None:
"""Display the chat history."""
for msg in st.session_state.messages:
with st.chat_message(msg.role):
st.write(msg.content)
def run(self) -> None:
"""Run the chat application."""
self.setup_page()
self.state_manager.initialize_state()
self.display_chat_history()
user_input = st.chat_input("Type your message here...")
if user_input:
# Display and store user message
with st.chat_message("user"):
st.write(user_input)
self.state_manager.add_message("user", user_input)
# Generate and display assistant reply
try:
complete_response = self.assistant_manager.generate_reply(user_input)
self.state_manager.add_message(
"assistant",
complete_response
)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
logger.exception("Error in assistant reply generation")
def main():
"""Application entry point."""
try:
app = ChatApplication()
app.run()
except Exception as e:
st.error(f"Application error: {str(e)}")
logger.exception("Fatal application error")
if __name__ == "__main__":
main()