File size: 11,449 Bytes
73d49e1 b8736af 713dd57 b02dba2 713dd57 96157a7 713dd57 96157a7 b02dba2 713dd57 b02dba2 96157a7 b02dba2 96157a7 b02dba2 96157a7 713dd57 96157a7 713dd57 b02dba2 96157a7 b02dba2 96157a7 73d49e1 b02dba2 96157a7 b02dba2 96157a7 73d49e1 b02dba2 96157a7 b02dba2 96157a7 73d49e1 b02dba2 96157a7 b02dba2 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 b8736af b02dba2 96157a7 b02dba2 96157a7 b02dba2 713dd57 b02dba2 713dd57 96157a7 b02dba2 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 6853d31 96157a7 b02dba2 96157a7 b02dba2 96157a7 713dd57 96157a7 6853d31 96157a7 6853d31 96157a7 b02dba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import re
import io
import time
import json
import queue
import logging
from typing import Any, Generator, Optional, List, Dict, Tuple
from dataclasses import dataclass
import streamlit as st
from dotenv import load_dotenv
from PIL import Image
import openai
from langsmith.wrappers import wrap_openai
from langsmith import traceable
# ------------------------
# Configuration and Types
# ------------------------
@dataclass
class AppConfig:
"""Application configuration settings."""
page_title: str = "Solution Specifier A"
page_icon: str = "π€"
layout: str = "centered"
@dataclass
class Message:
"""Chat message structure."""
role: str
content: str
class StreamingError(Exception):
"""Custom exception for streaming-related errors."""
pass
# ------------------------
# Logging Configuration
# ------------------------
def setup_logging() -> logging.Logger:
"""Configure and return the application logger."""
logging.basicConfig(
format="[%(asctime)s] %(levelname)+8s: %(message)s",
level=logging.INFO,
)
return logging.getLogger(__name__)
logger = setup_logging()
# ------------------------
# Environment Setup
# ------------------------
class EnvironmentManager:
"""Manages environment variables and configuration."""
@staticmethod
def load_environment() -> Tuple[str, str]:
"""Load and validate environment variables."""
load_dotenv(override=True)
api_key = os.getenv("OPENAI_API_KEY")
assistant_id = os.getenv("ASSISTANT_ID_SOLUTION_SPECIFIER_A")
if not api_key or not assistant_id:
raise RuntimeError(
"Missing required environment variables. Please set "
"OPENAI_API_KEY and ASSISTANT_ID_SOLUTION_SPECIFIER_A"
)
return api_key, assistant_id
# ------------------------
# State Management
# ------------------------
class StateManager:
"""Manages Streamlit session state."""
@staticmethod
def initialize_state() -> None:
"""Initialize session state variables."""
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread" not in st.session_state:
st.session_state.thread = None
if "tool_requests" not in st.session_state:
st.session_state.tool_requests = queue.Queue()
if "run_stream" not in st.session_state:
st.session_state.run_stream = None
@staticmethod
def add_message(role: str, content: str) -> None:
"""Add a message to the conversation history."""
st.session_state.messages.append(Message(role=role, content=content))
# ------------------------
# Text Processing
# ------------------------
class TextProcessor:
"""Handles text processing and formatting."""
@staticmethod
def remove_citations(text: str) -> str:
"""Remove citation markers from text."""
pattern = r"γ\d+β \w+γ"
return re.sub(pattern, "π", text)
# ------------------------
# Streaming Handler
# ------------------------
class StreamHandler:
"""Handles streaming of assistant responses."""
def __init__(self, client: Any):
self.client = client
self.text_processor = TextProcessor()
self.complete_response = []
def stream_data(self) -> Generator[Any, None, None]:
"""Stream data from the assistant run."""
st.toast("Thinking...", icon="π€")
content_produced = False
self.complete_response = [] # Reset for new stream
try:
for event in st.session_state.run_stream:
match event.event:
case "thread.message.delta":
yield from self._handle_message_delta(event, content_produced)
case "thread.run.requires_action":
yield from self._handle_action_request(event, content_produced)
case "thread.run.failed":
logger.error(f"Run failed: {event}")
raise StreamingError(f"Assistant run failed: {event}")
st.toast("Completed", icon="β
")
# Return the complete response for storage
return "".join(self.complete_response)
except Exception as e:
logger.error(f"Streaming error: {e}")
st.error(f"An error occurred while streaming: {str(e)}")
raise
def _handle_message_delta(self, event: Any, content_produced: bool) -> Generator[Any, None, None]:
"""Handle message delta events."""
content = event.data.delta.content[0]
match content.type:
case "text":
processed_text = self.text_processor.remove_citations(content.text.value)
self.complete_response.append(processed_text) # Store the chunk
yield processed_text
case "image_file":
image_content = io.BytesIO(self.client.files.content(content.image_file.file_id).read())
yield Image.open(image_content)
def _handle_action_request(self, event: Any, content_produced: bool) -> Generator[str, None, None]:
"""Handle action request events."""
logger.info(f"[Tool Request] {event}")
st.session_state.tool_requests.put(event)
if not content_produced:
yield "[Processing function call...]"
# ------------------------
# Tool Request Handler
# ------------------------
class ToolRequestHandler:
"""Handles tool requests from the assistant."""
@staticmethod
def handle_request(event: Any) -> Tuple[List[Dict[str, str]], str, str]:
"""Process tool requests and return outputs."""
st.toast("Processing function call...", icon="βοΈ")
tool_outputs = []
data = event.data
for tool_call in data.required_action.submit_tool_outputs.tool_calls:
output = ToolRequestHandler._process_tool_call(tool_call)
tool_outputs.append(output)
return tool_outputs, data.thread_id, data.id
@staticmethod
def _process_tool_call(tool_call: Any) -> Dict[str, str]:
"""Process individual tool calls."""
function_args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
match tool_call.function.name:
case "hello_world":
name = function_args.get("name", "anonymous")
output_val = f"Hello, {name}! This was from a local function."
case _:
output_val = json.dumps({"status": "error", "message": "Unknown function request."})
return {"tool_call_id": tool_call.id, "output": output_val}
# ------------------------
# Assistant Manager
# ------------------------
class AssistantManager:
"""Manages interactions with the OpenAI Assistant."""
def __init__(self, client: Any, assistant_id: str):
self.client = client
self.assistant_id = assistant_id
self.stream_handler = StreamHandler(client)
self.tool_handler = ToolRequestHandler()
@traceable
def generate_reply(self, user_input: str) -> str:
"""Generate and stream assistant's reply."""
# Ensure thread exists
if not st.session_state.thread:
st.session_state.thread = self.client.beta.threads.create()
# Add user message
self.client.beta.threads.messages.create(
thread_id=st.session_state.thread.id,
role="user",
content=user_input
)
complete_response = ""
# Stream initial response
with self.client.beta.threads.runs.stream(
thread_id=st.session_state.thread.id,
assistant_id=self.assistant_id,
) as run_stream:
complete_response = self._display_stream(run_stream)
# Handle any tool requests
self._process_tool_requests()
return complete_response
def _display_stream(self, run_stream: Any, create_context: bool = True) -> str:
"""Display streaming content."""
st.session_state.run_stream = run_stream
if create_context:
with st.chat_message("assistant"):
return st.write_stream(self.stream_handler.stream_data)
else:
return st.write_stream(self.stream_handler.stream_data)
def _process_tool_requests(self) -> None:
"""Process any pending tool requests."""
while not st.session_state.tool_requests.empty():
event = st.session_state.tool_requests.get()
tool_outputs, thread_id, run_id = self.tool_handler.handle_request(event)
with self.client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=thread_id,
run_id=run_id,
tool_outputs=tool_outputs
) as next_stream:
self._display_stream(next_stream, create_context=False)
# ------------------------
# Main Application
# ------------------------
class ChatApplication:
"""Main chat application class."""
def __init__(self):
self.config = AppConfig()
api_key, assistant_id = EnvironmentManager.load_environment()
# Initialize OpenAI client
openai_client = openai.Client(api_key=api_key)
self.client = wrap_openai(openai_client)
# Initialize components
self.state_manager = StateManager()
self.assistant_manager = AssistantManager(self.client, assistant_id)
def setup_page(self) -> None:
"""Configure the Streamlit page."""
st.set_page_config(
page_title=self.config.page_title,
page_icon=self.config.page_icon,
layout=self.config.layout
)
st.title(self.config.page_title)
def display_chat_history(self) -> None:
"""Display the chat history."""
for msg in st.session_state.messages:
with st.chat_message(msg.role):
st.write(msg.content)
def run(self) -> None:
"""Run the chat application."""
self.setup_page()
self.state_manager.initialize_state()
self.display_chat_history()
user_input = st.chat_input("Type your message here...")
if user_input:
# Display and store user message
with st.chat_message("user"):
st.write(user_input)
self.state_manager.add_message("user", user_input)
# Generate and display assistant reply
try:
complete_response = self.assistant_manager.generate_reply(user_input)
self.state_manager.add_message(
"assistant",
complete_response
)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
logger.exception("Error in assistant reply generation")
def main():
"""Application entry point."""
try:
app = ChatApplication()
app.run()
except Exception as e:
st.error(f"Application error: {str(e)}")
logger.exception("Fatal application error")
if __name__ == "__main__":
main() |