Aatricks's picture
Upload folder using huggingface_hub
d9a2e19 verified
import copy
import logging
import gguf
import torch
from modules.Device import Device
from modules.Model import ModelPatcher
from modules.Utilities import util
from modules.clip import Clip
from modules.cond import cast
# Constants for torch-compatible quantization types
TORCH_COMPATIBLE_QTYPES = {
None,
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
}
def is_torch_compatible(tensor: torch.Tensor) -> bool:
"""#### Check if a tensor is compatible with PyTorch operations.
#### Args:
- `tensor` (torch.Tensor): The tensor to check.
#### Returns:
- `bool`: Whether the tensor is torch-compatible.
"""
return (
tensor is None
or getattr(tensor, "tensor_type", None) in TORCH_COMPATIBLE_QTYPES
)
def is_quantized(tensor: torch.Tensor) -> bool:
"""#### Check if a tensor is quantized.
#### Args:
- `tensor` (torch.Tensor): The tensor to check.
#### Returns:
- `bool`: Whether the tensor is quantized.
"""
return not is_torch_compatible(tensor)
def dequantize(
data: torch.Tensor,
qtype: gguf.GGMLQuantizationType,
oshape: tuple,
dtype: torch.dtype = None,
) -> torch.Tensor:
"""#### Dequantize tensor back to usable shape/dtype.
#### Args:
- `data` (torch.Tensor): The quantized data.
- `qtype` (gguf.GGMLQuantizationType): The quantization type.
- `oshape` (tuple): The output shape.
- `dtype` (torch.dtype, optional): The output dtype. Defaults to None.
#### Returns:
- `torch.Tensor`: The dequantized tensor.
"""
# Get block size and type size for quantization format
block_size, type_size = gguf.GGML_QUANT_SIZES[qtype]
dequantize_blocks = dequantize_functions[qtype]
# Reshape data into blocks
rows = data.reshape((-1, data.shape[-1])).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = rows.reshape((n_blocks, type_size))
# Dequantize blocks and reshape to target shape
blocks = dequantize_blocks(blocks, block_size, type_size, dtype)
return blocks.reshape(oshape)
def split_block_dims(blocks: torch.Tensor, *args) -> list:
"""#### Split blocks into dimensions.
#### Args:
- `blocks` (torch.Tensor): The blocks to split.
- `*args`: The dimensions to split into.
#### Returns:
- `list`: The split blocks.
"""
n_max = blocks.shape[1]
dims = list(args) + [n_max - sum(args)]
return torch.split(blocks, dims, dim=1)
# Legacy Quantization Functions
def dequantize_blocks_Q8_0(
blocks: torch.Tensor, block_size: int, type_size: int, dtype: torch.dtype = None
) -> torch.Tensor:
"""#### Dequantize Q8_0 quantized blocks.
#### Args:
- `blocks` (torch.Tensor): The quantized blocks.
- `block_size` (int): The block size.
- `type_size` (int): The type size.
- `dtype` (torch.dtype, optional): The output dtype. Defaults to None.
#### Returns:
- `torch.Tensor`: The dequantized blocks.
"""
# Split blocks into scale and quantized values
d, x = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(dtype)
x = x.view(torch.int8)
return d * x
# K Quants #
QK_K = 256
K_SCALE_SIZE = 12
# Mapping of quantization types to dequantization functions
dequantize_functions = {
gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0,
}
def dequantize_tensor(
tensor: torch.Tensor, dtype: torch.dtype = None, dequant_dtype: torch.dtype = None
) -> torch.Tensor:
"""#### Dequantize a potentially quantized tensor.
#### Args:
- `tensor` (torch.Tensor): The tensor to dequantize.
- `dtype` (torch.dtype, optional): Target dtype. Defaults to None.
- `dequant_dtype` (torch.dtype, optional): Intermediate dequantization dtype. Defaults to None.
#### Returns:
- `torch.Tensor`: The dequantized tensor.
"""
qtype = getattr(tensor, "tensor_type", None)
oshape = getattr(tensor, "tensor_shape", tensor.shape)
if qtype in TORCH_COMPATIBLE_QTYPES:
return tensor.to(dtype)
elif qtype in dequantize_functions:
dequant_dtype = dtype if dequant_dtype == "target" else dequant_dtype
return dequantize(tensor.data, qtype, oshape, dtype=dequant_dtype).to(dtype)
class GGMLLayer(torch.nn.Module):
"""#### Base class for GGML quantized layers.
Handles dynamic dequantization of weights during forward pass.
"""
comfy_cast_weights: bool = True
dequant_dtype: torch.dtype = None
patch_dtype: torch.dtype = None
torch_compatible_tensor_types: set = {
None,
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
}
def is_ggml_quantized(
self, *, weight: torch.Tensor = None, bias: torch.Tensor = None
) -> bool:
"""#### Check if layer weights are GGML quantized.
#### Args:
- `weight` (torch.Tensor, optional): Weight tensor to check. Defaults to self.weight.
- `bias` (torch.Tensor, optional): Bias tensor to check. Defaults to self.bias.
#### Returns:
- `bool`: Whether weights are quantized.
"""
if weight is None:
weight = self.weight
if bias is None:
bias = self.bias
return is_quantized(weight) or is_quantized(bias)
def _load_from_state_dict(
self, state_dict: dict, prefix: str, *args, **kwargs
) -> None:
"""#### Load quantized weights from state dict.
#### Args:
- `state_dict` (dict): State dictionary.
- `prefix` (str): Key prefix.
- `*args`: Additional arguments.
- `**kwargs`: Additional keyword arguments.
"""
weight = state_dict.get(f"{prefix}weight")
bias = state_dict.get(f"{prefix}bias")
# Use modified loader for quantized or linear layers
if self.is_ggml_quantized(weight=weight, bias=bias) or isinstance(
self, torch.nn.Linear
):
return self.ggml_load_from_state_dict(state_dict, prefix, *args, **kwargs)
return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
def ggml_load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: list,
unexpected_keys: list,
error_msgs: list,
) -> None:
"""#### Load GGML quantized weights from state dict.
#### Args:
- `state_dict` (dict): State dictionary.
- `prefix` (str): Key prefix.
- `local_metadata` (dict): Local metadata.
- `strict` (bool): Strict loading mode.
- `missing_keys` (list): Keys missing from state dict.
- `unexpected_keys` (list): Unexpected keys found.
- `error_msgs` (list): Error messages.
"""
prefix_len = len(prefix)
for k, v in state_dict.items():
if k[prefix_len:] == "weight":
self.weight = torch.nn.Parameter(v, requires_grad=False)
elif k[prefix_len:] == "bias" and v is not None:
self.bias = torch.nn.Parameter(v, requires_grad=False)
else:
missing_keys.append(k)
def _save_to_state_dict(self, *args, **kwargs) -> None:
"""#### Save layer state to state dict.
#### Args:
- `*args`: Additional arguments.
- `**kwargs`: Additional keyword arguments.
"""
if self.is_ggml_quantized():
return self.ggml_save_to_state_dict(*args, **kwargs)
return super()._save_to_state_dict(*args, **kwargs)
def ggml_save_to_state_dict(
self, destination: dict, prefix: str, keep_vars: bool
) -> None:
"""#### Save GGML layer state to state dict.
#### Args:
- `destination` (dict): Destination dictionary.
- `prefix` (str): Key prefix.
- `keep_vars` (bool): Whether to keep variables.
"""
# Create fake tensors for VRAM estimation
weight = torch.zeros_like(self.weight, device=torch.device("meta"))
destination[prefix + "weight"] = weight
if self.bias is not None:
bias = torch.zeros_like(self.bias, device=torch.device("meta"))
destination[prefix + "bias"] = bias
return
def get_weight(self, tensor: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
"""#### Get dequantized weight tensor.
#### Args:
- `tensor` (torch.Tensor): Input tensor.
- `dtype` (torch.dtype): Target dtype.
#### Returns:
- `torch.Tensor`: Dequantized tensor.
"""
if tensor is None:
return
# Consolidate and load patches to GPU asynchronously
patch_list = []
device = tensor.device
for function, patches, key in getattr(tensor, "patches", []):
patch_list += move_patch_to_device(patches, device)
# Dequantize tensor while patches load
weight = dequantize_tensor(tensor, dtype, self.dequant_dtype)
# Apply patches
if patch_list:
if self.patch_dtype is None:
weight = function(patch_list, weight, key)
else:
# For testing, may degrade image quality
patch_dtype = (
dtype if self.patch_dtype == "target" else self.patch_dtype
)
weight = function(patch_list, weight, key, patch_dtype)
return weight
def cast_bias_weight(
self,
input: torch.Tensor = None,
dtype: torch.dtype = None,
device: torch.device = None,
bias_dtype: torch.dtype = None,
) -> tuple:
"""#### Cast layer weights and bias to target dtype/device.
#### Args:
- `input` (torch.Tensor, optional): Input tensor for type/device inference.
- `dtype` (torch.dtype, optional): Target dtype.
- `device` (torch.device, optional): Target device.
- `bias_dtype` (torch.dtype, optional): Target bias dtype.
#### Returns:
- `tuple`: (cast_weight, cast_bias)
"""
if input is not None:
if dtype is None:
dtype = getattr(input, "dtype", torch.float32)
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
non_blocking = Device.device_supports_non_blocking(device)
if self.bias is not None:
bias = self.get_weight(self.bias.to(device), dtype)
bias = cast.cast_to(
bias, bias_dtype, device, non_blocking=non_blocking, copy=False
)
weight = self.get_weight(self.weight.to(device), dtype)
weight = cast.cast_to(
weight, dtype, device, non_blocking=non_blocking, copy=False
)
return weight, bias
def forward_comfy_cast_weights(
self, input: torch.Tensor, *args, **kwargs
) -> torch.Tensor:
"""#### Forward pass with weight casting.
#### Args:
- `input` (torch.Tensor): Input tensor.
- `*args`: Additional arguments.
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
if self.is_ggml_quantized():
return self.forward_ggml_cast_weights(input, *args, **kwargs)
return super().forward_comfy_cast_weights(input, *args, **kwargs)
class GGMLOps(cast.manual_cast):
"""
Dequantize weights on the fly before doing the compute
"""
class Linear(GGMLLayer, cast.manual_cast.Linear):
def __init__(
self, in_features, out_features, bias=True, device=None, dtype=None
):
"""
Initialize the Linear layer.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
bias (bool, optional): If set to False, the layer will not learn an additive bias. Defaults to True.
device (torch.device, optional): The device to store the layer's parameters. Defaults to None.
dtype (torch.dtype, optional): The data type of the layer's parameters. Defaults to None.
"""
torch.nn.Module.__init__(self)
# TODO: better workaround for reserved memory spike on windows
# Issue is with `torch.empty` still reserving the full memory for the layer
# Windows doesn't over-commit memory so without this 24GB+ of pagefile is used
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.bias = None
def forward_ggml_cast_weights(self, input: torch.Tensor) -> torch.Tensor:
"""
Forward pass with GGML cast weights.
Args:
input (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor.
"""
weight, bias = self.cast_bias_weight(input)
return torch.nn.functional.linear(input, weight, bias)
class Embedding(GGMLLayer, cast.manual_cast.Embedding):
def forward_ggml_cast_weights(
self, input: torch.Tensor, out_dtype: torch.dtype = None
) -> torch.Tensor:
"""
Forward pass with GGML cast weights for embedding.
Args:
input (torch.Tensor): The input tensor.
out_dtype (torch.dtype, optional): The output data type. Defaults to None.
Returns:
torch.Tensor: The output tensor.
"""
output_dtype = out_dtype
if (
self.weight.dtype == torch.float16
or self.weight.dtype == torch.bfloat16
):
out_dtype = None
weight, _bias = self.cast_bias_weight(
self, device=input.device, dtype=out_dtype
)
return torch.nn.functional.embedding(
input,
weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
).to(dtype=output_dtype)
def gguf_sd_loader_get_orig_shape(
reader: gguf.GGUFReader, tensor_name: str
) -> torch.Size:
"""#### Get the original shape of a tensor from a GGUF reader.
#### Args:
- `reader` (gguf.GGUFReader): The GGUF reader.
- `tensor_name` (str): The name of the tensor.
#### Returns:
- `torch.Size`: The original shape of the tensor.
"""
field_key = f"comfy.gguf.orig_shape.{tensor_name}"
field = reader.get_field(field_key)
if field is None:
return None
# Has original shape metadata, so we try to decode it.
if (
len(field.types) != 2
or field.types[0] != gguf.GGUFValueType.ARRAY
or field.types[1] != gguf.GGUFValueType.INT32
):
raise TypeError(
f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}"
)
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))
class GGMLTensor(torch.Tensor):
"""
Main tensor-like class for storing quantized weights
"""
def __init__(self, *args, tensor_type, tensor_shape, patches=[], **kwargs):
"""
Initialize the GGMLTensor.
Args:
*args: Variable length argument list.
tensor_type: The type of the tensor.
tensor_shape: The shape of the tensor.
patches (list, optional): List of patches. Defaults to [].
**kwargs: Arbitrary keyword arguments.
"""
super().__init__()
self.tensor_type = tensor_type
self.tensor_shape = tensor_shape
self.patches = patches
def __new__(cls, *args, tensor_type, tensor_shape, patches=[], **kwargs):
"""
Create a new instance of GGMLTensor.
Args:
*args: Variable length argument list.
tensor_type: The type of the tensor.
tensor_shape: The shape of the tensor.
patches (list, optional): List of patches. Defaults to [].
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: A new instance of GGMLTensor.
"""
return super().__new__(cls, *args, **kwargs)
def to(self, *args, **kwargs):
"""
Convert the tensor to a specified device and/or dtype.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: The converted tensor.
"""
new = super().to(*args, **kwargs)
new.tensor_type = getattr(self, "tensor_type", None)
new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
new.patches = getattr(self, "patches", []).copy()
return new
def clone(self, *args, **kwargs):
"""
Clone the tensor.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: The cloned tensor.
"""
return self
def detach(self, *args, **kwargs):
"""
Detach the tensor from the computation graph.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: The detached tensor.
"""
return self
def copy_(self, *args, **kwargs):
"""
Copy the values from another tensor into this tensor.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: The tensor with copied values.
"""
try:
return super().copy_(*args, **kwargs)
except Exception as e:
print(f"ignoring 'copy_' on tensor: {e}")
def __deepcopy__(self, *args, **kwargs):
"""
Create a deep copy of the tensor.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGMLTensor: The deep copied tensor.
"""
new = super().__deepcopy__(*args, **kwargs)
new.tensor_type = getattr(self, "tensor_type", None)
new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
new.patches = getattr(self, "patches", []).copy()
return new
@property
def shape(self):
"""
Get the shape of the tensor.
Returns:
torch.Size: The shape of the tensor.
"""
if not hasattr(self, "tensor_shape"):
self.tensor_shape = self.size()
return self.tensor_shape
def gguf_sd_loader(path: str, handle_prefix: str = "model.diffusion_model."):
"""#### Load a GGUF file into a state dict.
#### Args:
- `path` (str): The path to the GGUF file.
- `handle_prefix` (str, optional): The prefix to handle. Defaults to "model.diffusion_model.".
#### Returns:
- `dict`: The loaded state dict.
"""
reader = gguf.GGUFReader(path)
# filter and strip prefix
has_prefix = False
if handle_prefix is not None:
prefix_len = len(handle_prefix)
tensor_names = set(tensor.name for tensor in reader.tensors)
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)
tensors = []
for tensor in reader.tensors:
sd_key = tensor_name = tensor.name
if has_prefix:
if not tensor_name.startswith(handle_prefix):
continue
sd_key = tensor_name[prefix_len:]
tensors.append((sd_key, tensor))
# detect and verify architecture
compat = None
arch_str = None
arch_field = reader.get_field("general.architecture")
if arch_field is not None:
if (
len(arch_field.types) != 1
or arch_field.types[0] != gguf.GGUFValueType.STRING
):
raise TypeError(
f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}"
)
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
if arch_str not in {"flux", "sd1", "sdxl", "t5", "t5encoder"}:
raise ValueError(
f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder but got {arch_str!r}"
)
# main loading loop
state_dict = {}
qtype_dict = {}
for sd_key, tensor in tensors:
tensor_name = tensor.name
tensor_type_str = str(tensor.tensor_type)
torch_tensor = torch.from_numpy(tensor.data) # mmap
shape = gguf_sd_loader_get_orig_shape(reader, tensor_name)
if shape is None:
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
# Workaround for stable-diffusion.cpp SDXL detection.
if compat == "sd.cpp" and arch_str == "sdxl":
if any(
[
tensor_name.endswith(x)
for x in (".proj_in.weight", ".proj_out.weight")
]
):
while len(shape) > 2 and shape[-1] == 1:
shape = shape[:-1]
# add to state dict
if tensor.tensor_type in {
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
}:
torch_tensor = torch_tensor.view(*shape)
state_dict[sd_key] = GGMLTensor(
torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape
)
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1
# sanity check debug print
print("\nggml_sd_loader:")
for k, v in qtype_dict.items():
print(f" {k:30}{v:3}")
return state_dict
class GGUFModelPatcher(ModelPatcher.ModelPatcher):
patch_on_device = False
def unpatch_model(self, device_to=None, unpatch_weights=True):
"""
Unpatch the model.
Args:
device_to (torch.device, optional): The device to move the model to. Defaults to None.
unpatch_weights (bool, optional): Whether to unpatch the weights. Defaults to True.
Returns:
GGUFModelPatcher: The unpatched model.
"""
if unpatch_weights:
for p in self.model.parameters():
if is_torch_compatible(p):
continue
patches = getattr(p, "patches", [])
if len(patches) > 0:
p.patches = []
self.object_patches = {}
# TODO: Find another way to not unload after patches
return super().unpatch_model(
device_to=device_to, unpatch_weights=unpatch_weights
)
mmap_released = False
def load(self, *args, force_patch_weights=False, **kwargs):
"""
Load the model.
Args:
*args: Variable length argument list.
force_patch_weights (bool, optional): Whether to force patch weights. Defaults to False.
**kwargs: Arbitrary keyword arguments.
"""
super().load(*args, force_patch_weights=True, **kwargs)
# make sure nothing stays linked to mmap after first load
if not self.mmap_released:
linked = []
if kwargs.get("lowvram_model_memory", 0) > 0:
for n, m in self.model.named_modules():
if hasattr(m, "weight"):
device = getattr(m.weight, "device", None)
if device == self.offload_device:
linked.append((n, m))
continue
if hasattr(m, "bias"):
device = getattr(m.bias, "device", None)
if device == self.offload_device:
linked.append((n, m))
continue
if linked:
print(f"Attempting to release mmap ({len(linked)})")
for n, m in linked:
# TODO: possible to OOM, find better way to detach
m.to(self.load_device).to(self.offload_device)
self.mmap_released = True
def add_object_patch(self, name, obj):
self.object_patches[name] = obj
def clone(self, *args, **kwargs):
"""
Clone the model patcher.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
GGUFModelPatcher: The cloned model patcher.
"""
n = GGUFModelPatcher(
self.model,
self.load_device,
self.offload_device,
self.size,
weight_inplace_update=self.weight_inplace_update,
)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.patches_uuid = self.patches_uuid
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.patch_on_device = getattr(self, "patch_on_device", False)
return n
class UnetLoaderGGUF:
def load_unet(
self,
unet_name: str,
dequant_dtype: str = None,
patch_dtype: str = None,
patch_on_device: bool = None,
) -> tuple:
"""
Load the UNet model.
Args:
unet_name (str): The name of the UNet model.
dequant_dtype (str, optional): The dequantization data type. Defaults to None.
patch_dtype (str, optional): The patch data type. Defaults to None.
patch_on_device (bool, optional): Whether to patch on device. Defaults to None.
Returns:
tuple: The loaded model.
"""
ops = GGMLOps()
if dequant_dtype in ("default", None):
ops.Linear.dequant_dtype = None
elif dequant_dtype in ["target"]:
ops.Linear.dequant_dtype = dequant_dtype
else:
ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)
if patch_dtype in ("default", None):
ops.Linear.patch_dtype = None
elif patch_dtype in ["target"]:
ops.Linear.patch_dtype = patch_dtype
else:
ops.Linear.patch_dtype = getattr(torch, patch_dtype)
unet_path = "./_internal/unet/" + unet_name
sd = gguf_sd_loader(unet_path)
model = ModelPatcher.load_diffusion_model_state_dict(
sd, model_options={"custom_operations": ops}
)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
raise RuntimeError(
"ERROR: Could not detect model type of: {}".format(unet_path)
)
model = GGUFModelPatcher.clone(model)
model.patch_on_device = patch_on_device
return (model,)
clip_sd_map = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
clip_name_dict = {
"stable_diffusion": Clip.CLIPType.STABLE_DIFFUSION,
"sdxl": Clip.CLIPType.STABLE_DIFFUSION,
"sd3": Clip.CLIPType.SD3,
"flux": Clip.CLIPType.FLUX,
}
def gguf_clip_loader(path: str) -> dict:
"""#### Load a CLIP model from a GGUF file.
#### Args:
- `path` (str): The path to the GGUF file.
#### Returns:
- `dict`: The loaded CLIP model.
"""
raw_sd = gguf_sd_loader(path)
assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!"
sd = {}
for k, v in raw_sd.items():
for s, d in clip_sd_map.items():
k = k.replace(s, d)
sd[k] = v
return sd
class CLIPLoaderGGUF:
def load_data(self, ckpt_paths: list) -> list:
"""
Load data from checkpoint paths.
Args:
ckpt_paths (list): List of checkpoint paths.
Returns:
list: List of loaded data.
"""
clip_data = []
for p in ckpt_paths:
if p.endswith(".gguf"):
clip_data.append(gguf_clip_loader(p))
else:
sd = util.load_torch_file(p, safe_load=True)
clip_data.append(
{
k: GGMLTensor(
v,
tensor_type=gguf.GGMLQuantizationType.F16,
tensor_shape=v.shape,
)
for k, v in sd.items()
}
)
return clip_data
def load_patcher(self, clip_paths: list, clip_type: str, clip_data: list) -> Clip:
"""
Load the model patcher.
Args:
clip_paths (list): List of clip paths.
clip_type (str): The type of the clip.
clip_data (list): List of clip data.
Returns:
Clip: The loaded clip.
"""
clip = Clip.load_text_encoder_state_dicts(
clip_type=clip_type,
state_dicts=clip_data,
model_options={
"custom_operations": GGMLOps,
"initial_device": Device.text_encoder_offload_device(),
},
embedding_directory="models/embeddings",
)
clip.patcher = GGUFModelPatcher.clone(clip.patcher)
# for some reason this is just missing in some SAI checkpoints
if getattr(clip.cond_stage_model, "clip_l", None) is not None:
if (
getattr(
clip.cond_stage_model.clip_l.transformer.text_projection.weight,
"tensor_shape",
None,
)
is None
):
clip.cond_stage_model.clip_l.transformer.text_projection = (
cast.manual_cast.Linear(768, 768)
)
if getattr(clip.cond_stage_model, "clip_g", None) is not None:
if (
getattr(
clip.cond_stage_model.clip_g.transformer.text_projection.weight,
"tensor_shape",
None,
)
is None
):
clip.cond_stage_model.clip_g.transformer.text_projection = (
cast.manual_cast.Linear(1280, 1280)
)
return clip
class DualCLIPLoaderGGUF(CLIPLoaderGGUF):
def load_clip(self, clip_name1: str, clip_name2: str, type: str) -> tuple:
"""
Load dual clips.
Args:
clip_name1 (str): The name of the first clip.
clip_name2 (str): The name of the second clip.
type (str): The type of the clip.
Returns:
tuple: The loaded clips.
"""
clip_path1 = "./_internal/clip/" + clip_name1
clip_path2 = "./_internal/clip/" + clip_name2
clip_paths = (clip_path1, clip_path2)
clip_type = clip_name_dict.get(type, Clip.CLIPType.STABLE_DIFFUSION)
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)
class CLIPTextEncodeFlux:
def encode(
self,
clip: Clip,
clip_l: str,
t5xxl: str,
guidance: str,
flux_enabled: bool = False,
) -> tuple:
"""
Encode text using CLIP and T5XXL.
Args:
clip (Clip): The clip object.
clip_l (str): The clip text.
t5xxl (str): The T5XXL text.
guidance (str): The guidance text.
flux_enabled (bool, optional): Whether flux is enabled. Defaults to False.
Returns:
tuple: The encoded text.
"""
tokens = clip.tokenize(clip_l)
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
output = clip.encode_from_tokens(
tokens, return_pooled=True, return_dict=True, flux_enabled=flux_enabled
)
cond = output.pop("cond")
output["guidance"] = guidance
return ([[cond, output]],)
class ConditioningZeroOut:
def zero_out(self, conditioning: list) -> list:
"""
Zero out the conditioning.
Args:
conditioning (list): The conditioning list.
Returns:
list: The zeroed out conditioning.
"""
c = []
for t in conditioning:
d = t[1].copy()
pooled_output = d.get("pooled_output", None)
if pooled_output is not None:
d["pooled_output"] = torch.zeros_like(pooled_output)
n = [torch.zeros_like(t[0]), d]
c.append(n)
return (c,)