File size: 34,745 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
import copy
import logging
import gguf
import torch

from modules.Device import Device
from modules.Model import ModelPatcher
from modules.Utilities import util
from modules.clip import Clip
from modules.cond import cast

# Constants for torch-compatible quantization types
TORCH_COMPATIBLE_QTYPES = {
    None,
    gguf.GGMLQuantizationType.F32,
    gguf.GGMLQuantizationType.F16,
}


def is_torch_compatible(tensor: torch.Tensor) -> bool:
    """#### Check if a tensor is compatible with PyTorch operations.



    #### Args:

        - `tensor` (torch.Tensor): The tensor to check.



    #### Returns:

        - `bool`: Whether the tensor is torch-compatible.

    """
    return (
        tensor is None
        or getattr(tensor, "tensor_type", None) in TORCH_COMPATIBLE_QTYPES
    )


def is_quantized(tensor: torch.Tensor) -> bool:
    """#### Check if a tensor is quantized.



    #### Args:

        - `tensor` (torch.Tensor): The tensor to check.



    #### Returns:

        - `bool`: Whether the tensor is quantized.

    """
    return not is_torch_compatible(tensor)


def dequantize(

    data: torch.Tensor,

    qtype: gguf.GGMLQuantizationType,

    oshape: tuple,

    dtype: torch.dtype = None,

) -> torch.Tensor:
    """#### Dequantize tensor back to usable shape/dtype.



    #### Args:

        - `data` (torch.Tensor): The quantized data.

        - `qtype` (gguf.GGMLQuantizationType): The quantization type.

        - `oshape` (tuple): The output shape.

        - `dtype` (torch.dtype, optional): The output dtype. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The dequantized tensor.

    """
    # Get block size and type size for quantization format
    block_size, type_size = gguf.GGML_QUANT_SIZES[qtype]
    dequantize_blocks = dequantize_functions[qtype]

    # Reshape data into blocks
    rows = data.reshape((-1, data.shape[-1])).view(torch.uint8)
    n_blocks = rows.numel() // type_size
    blocks = rows.reshape((n_blocks, type_size))

    # Dequantize blocks and reshape to target shape
    blocks = dequantize_blocks(blocks, block_size, type_size, dtype)
    return blocks.reshape(oshape)


def split_block_dims(blocks: torch.Tensor, *args) -> list:
    """#### Split blocks into dimensions.



    #### Args:

        - `blocks` (torch.Tensor): The blocks to split.

        - `*args`: The dimensions to split into.



    #### Returns:

        - `list`: The split blocks.

    """
    n_max = blocks.shape[1]
    dims = list(args) + [n_max - sum(args)]
    return torch.split(blocks, dims, dim=1)


# Legacy Quantization Functions
def dequantize_blocks_Q8_0(

    blocks: torch.Tensor, block_size: int, type_size: int, dtype: torch.dtype = None

) -> torch.Tensor:
    """#### Dequantize Q8_0 quantized blocks.



    #### Args:

        - `blocks` (torch.Tensor): The quantized blocks.

        - `block_size` (int): The block size.

        - `type_size` (int): The type size.

        - `dtype` (torch.dtype, optional): The output dtype. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The dequantized blocks.

    """
    # Split blocks into scale and quantized values
    d, x = split_block_dims(blocks, 2)
    d = d.view(torch.float16).to(dtype)
    x = x.view(torch.int8)
    return d * x


# K Quants #
QK_K = 256
K_SCALE_SIZE = 12

# Mapping of quantization types to dequantization functions
dequantize_functions = {
    gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0,
}


def dequantize_tensor(

    tensor: torch.Tensor, dtype: torch.dtype = None, dequant_dtype: torch.dtype = None

) -> torch.Tensor:
    """#### Dequantize a potentially quantized tensor.



    #### Args:

        - `tensor` (torch.Tensor): The tensor to dequantize.

        - `dtype` (torch.dtype, optional): Target dtype. Defaults to None.

        - `dequant_dtype` (torch.dtype, optional): Intermediate dequantization dtype. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The dequantized tensor.

    """
    qtype = getattr(tensor, "tensor_type", None)
    oshape = getattr(tensor, "tensor_shape", tensor.shape)

    if qtype in TORCH_COMPATIBLE_QTYPES:
        return tensor.to(dtype)
    elif qtype in dequantize_functions:
        dequant_dtype = dtype if dequant_dtype == "target" else dequant_dtype
        return dequantize(tensor.data, qtype, oshape, dtype=dequant_dtype).to(dtype)


class GGMLLayer(torch.nn.Module):
    """#### Base class for GGML quantized layers.



    Handles dynamic dequantization of weights during forward pass.

    """

    comfy_cast_weights: bool = True
    dequant_dtype: torch.dtype = None
    patch_dtype: torch.dtype = None
    torch_compatible_tensor_types: set = {
        None,
        gguf.GGMLQuantizationType.F32,
        gguf.GGMLQuantizationType.F16,
    }

    def is_ggml_quantized(

        self, *, weight: torch.Tensor = None, bias: torch.Tensor = None

    ) -> bool:
        """#### Check if layer weights are GGML quantized.



        #### Args:

            - `weight` (torch.Tensor, optional): Weight tensor to check. Defaults to self.weight.

            - `bias` (torch.Tensor, optional): Bias tensor to check. Defaults to self.bias.



        #### Returns:

            - `bool`: Whether weights are quantized.

        """
        if weight is None:
            weight = self.weight
        if bias is None:
            bias = self.bias
        return is_quantized(weight) or is_quantized(bias)

    def _load_from_state_dict(

        self, state_dict: dict, prefix: str, *args, **kwargs

    ) -> None:
        """#### Load quantized weights from state dict.



        #### Args:

            - `state_dict` (dict): State dictionary.

            - `prefix` (str): Key prefix.

            - `*args`: Additional arguments.

            - `**kwargs`: Additional keyword arguments.

        """
        weight = state_dict.get(f"{prefix}weight")
        bias = state_dict.get(f"{prefix}bias")
        # Use modified loader for quantized or linear layers
        if self.is_ggml_quantized(weight=weight, bias=bias) or isinstance(
            self, torch.nn.Linear
        ):
            return self.ggml_load_from_state_dict(state_dict, prefix, *args, **kwargs)
        return super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)

    def ggml_load_from_state_dict(

        self,

        state_dict: dict,

        prefix: str,

        local_metadata: dict,

        strict: bool,

        missing_keys: list,

        unexpected_keys: list,

        error_msgs: list,

    ) -> None:
        """#### Load GGML quantized weights from state dict.



        #### Args:

            - `state_dict` (dict): State dictionary.

            - `prefix` (str): Key prefix.

            - `local_metadata` (dict): Local metadata.

            - `strict` (bool): Strict loading mode.

            - `missing_keys` (list): Keys missing from state dict.

            - `unexpected_keys` (list): Unexpected keys found.

            - `error_msgs` (list): Error messages.

        """
        prefix_len = len(prefix)
        for k, v in state_dict.items():
            if k[prefix_len:] == "weight":
                self.weight = torch.nn.Parameter(v, requires_grad=False)
            elif k[prefix_len:] == "bias" and v is not None:
                self.bias = torch.nn.Parameter(v, requires_grad=False)
            else:
                missing_keys.append(k)

    def _save_to_state_dict(self, *args, **kwargs) -> None:
        """#### Save layer state to state dict.



        #### Args:

            - `*args`: Additional arguments.

            - `**kwargs`: Additional keyword arguments.

        """
        if self.is_ggml_quantized():
            return self.ggml_save_to_state_dict(*args, **kwargs)
        return super()._save_to_state_dict(*args, **kwargs)

    def ggml_save_to_state_dict(

        self, destination: dict, prefix: str, keep_vars: bool

    ) -> None:
        """#### Save GGML layer state to state dict.



        #### Args:

            - `destination` (dict): Destination dictionary.

            - `prefix` (str): Key prefix.

            - `keep_vars` (bool): Whether to keep variables.

        """
        # Create fake tensors for VRAM estimation
        weight = torch.zeros_like(self.weight, device=torch.device("meta"))
        destination[prefix + "weight"] = weight
        if self.bias is not None:
            bias = torch.zeros_like(self.bias, device=torch.device("meta"))
            destination[prefix + "bias"] = bias
        return

    def get_weight(self, tensor: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
        """#### Get dequantized weight tensor.



        #### Args:

            - `tensor` (torch.Tensor): Input tensor.

            - `dtype` (torch.dtype): Target dtype.



        #### Returns:

            - `torch.Tensor`: Dequantized tensor.

        """
        if tensor is None:
            return

        # Consolidate and load patches to GPU asynchronously
        patch_list = []
        device = tensor.device
        for function, patches, key in getattr(tensor, "patches", []):
            patch_list += move_patch_to_device(patches, device)

        # Dequantize tensor while patches load
        weight = dequantize_tensor(tensor, dtype, self.dequant_dtype)

        # Apply patches
        if patch_list:
            if self.patch_dtype is None:
                weight = function(patch_list, weight, key)
            else:
                # For testing, may degrade image quality
                patch_dtype = (
                    dtype if self.patch_dtype == "target" else self.patch_dtype
                )
                weight = function(patch_list, weight, key, patch_dtype)
        return weight

    def cast_bias_weight(

        self,

        input: torch.Tensor = None,

        dtype: torch.dtype = None,

        device: torch.device = None,

        bias_dtype: torch.dtype = None,

    ) -> tuple:
        """#### Cast layer weights and bias to target dtype/device.



        #### Args:

            - `input` (torch.Tensor, optional): Input tensor for type/device inference.

            - `dtype` (torch.dtype, optional): Target dtype.

            - `device` (torch.device, optional): Target device.

            - `bias_dtype` (torch.dtype, optional): Target bias dtype.



        #### Returns:

            - `tuple`: (cast_weight, cast_bias)

        """
        if input is not None:
            if dtype is None:
                dtype = getattr(input, "dtype", torch.float32)
            if bias_dtype is None:
                bias_dtype = dtype
            if device is None:
                device = input.device

        bias = None
        non_blocking = Device.device_supports_non_blocking(device)
        if self.bias is not None:
            bias = self.get_weight(self.bias.to(device), dtype)
            bias = cast.cast_to(
                bias, bias_dtype, device, non_blocking=non_blocking, copy=False
            )

        weight = self.get_weight(self.weight.to(device), dtype)
        weight = cast.cast_to(
            weight, dtype, device, non_blocking=non_blocking, copy=False
        )
        return weight, bias

    def forward_comfy_cast_weights(

        self, input: torch.Tensor, *args, **kwargs

    ) -> torch.Tensor:
        """#### Forward pass with weight casting.



        #### Args:

            - `input` (torch.Tensor): Input tensor.

            - `*args`: Additional arguments.

            - `**kwargs`: Additional keyword arguments.



        #### Returns:

            - `torch.Tensor`: Output tensor.

        """
        if self.is_ggml_quantized():
            return self.forward_ggml_cast_weights(input, *args, **kwargs)
        return super().forward_comfy_cast_weights(input, *args, **kwargs)


class GGMLOps(cast.manual_cast):
    """

    Dequantize weights on the fly before doing the compute

    """

    class Linear(GGMLLayer, cast.manual_cast.Linear):
        def __init__(

            self, in_features, out_features, bias=True, device=None, dtype=None

        ):
            """

            Initialize the Linear layer.



            Args:

                in_features (int): Number of input features.

                out_features (int): Number of output features.

                bias (bool, optional): If set to False, the layer will not learn an additive bias. Defaults to True.

                device (torch.device, optional): The device to store the layer's parameters. Defaults to None.

                dtype (torch.dtype, optional): The data type of the layer's parameters. Defaults to None.

            """
            torch.nn.Module.__init__(self)
            # TODO: better workaround for reserved memory spike on windows
            # Issue is with `torch.empty` still reserving the full memory for the layer
            # Windows doesn't over-commit memory so without this 24GB+ of pagefile is used
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.bias = None

        def forward_ggml_cast_weights(self, input: torch.Tensor) -> torch.Tensor:
            """

            Forward pass with GGML cast weights.



            Args:

                input (torch.Tensor): The input tensor.



            Returns:

                torch.Tensor: The output tensor.

            """
            weight, bias = self.cast_bias_weight(input)
            return torch.nn.functional.linear(input, weight, bias)

    class Embedding(GGMLLayer, cast.manual_cast.Embedding):
        def forward_ggml_cast_weights(

            self, input: torch.Tensor, out_dtype: torch.dtype = None

        ) -> torch.Tensor:
            """

            Forward pass with GGML cast weights for embedding.



            Args:

                input (torch.Tensor): The input tensor.

                out_dtype (torch.dtype, optional): The output data type. Defaults to None.



            Returns:

                torch.Tensor: The output tensor.

            """
            output_dtype = out_dtype
            if (
                self.weight.dtype == torch.float16
                or self.weight.dtype == torch.bfloat16
            ):
                out_dtype = None
            weight, _bias = self.cast_bias_weight(
                self, device=input.device, dtype=out_dtype
            )
            return torch.nn.functional.embedding(
                input,
                weight,
                self.padding_idx,
                self.max_norm,
                self.norm_type,
                self.scale_grad_by_freq,
                self.sparse,
            ).to(dtype=output_dtype)


def gguf_sd_loader_get_orig_shape(

    reader: gguf.GGUFReader, tensor_name: str

) -> torch.Size:
    """#### Get the original shape of a tensor from a GGUF reader.



    #### Args:

        - `reader` (gguf.GGUFReader): The GGUF reader.

        - `tensor_name` (str): The name of the tensor.



    #### Returns:

        - `torch.Size`: The original shape of the tensor.

    """
    field_key = f"comfy.gguf.orig_shape.{tensor_name}"
    field = reader.get_field(field_key)
    if field is None:
        return None
    # Has original shape metadata, so we try to decode it.
    if (
        len(field.types) != 2
        or field.types[0] != gguf.GGUFValueType.ARRAY
        or field.types[1] != gguf.GGUFValueType.INT32
    ):
        raise TypeError(
            f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}"
        )
    return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))


class GGMLTensor(torch.Tensor):
    """

    Main tensor-like class for storing quantized weights

    """

    def __init__(self, *args, tensor_type, tensor_shape, patches=[], **kwargs):
        """

        Initialize the GGMLTensor.



        Args:

            *args: Variable length argument list.

            tensor_type: The type of the tensor.

            tensor_shape: The shape of the tensor.

            patches (list, optional): List of patches. Defaults to [].

            **kwargs: Arbitrary keyword arguments.

        """
        super().__init__()
        self.tensor_type = tensor_type
        self.tensor_shape = tensor_shape
        self.patches = patches

    def __new__(cls, *args, tensor_type, tensor_shape, patches=[], **kwargs):
        """

        Create a new instance of GGMLTensor.



        Args:

            *args: Variable length argument list.

            tensor_type: The type of the tensor.

            tensor_shape: The shape of the tensor.

            patches (list, optional): List of patches. Defaults to [].

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: A new instance of GGMLTensor.

        """
        return super().__new__(cls, *args, **kwargs)

    def to(self, *args, **kwargs):
        """

        Convert the tensor to a specified device and/or dtype.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: The converted tensor.

        """
        new = super().to(*args, **kwargs)
        new.tensor_type = getattr(self, "tensor_type", None)
        new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
        new.patches = getattr(self, "patches", []).copy()
        return new

    def clone(self, *args, **kwargs):
        """

        Clone the tensor.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: The cloned tensor.

        """
        return self

    def detach(self, *args, **kwargs):
        """

        Detach the tensor from the computation graph.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: The detached tensor.

        """
        return self

    def copy_(self, *args, **kwargs):
        """

        Copy the values from another tensor into this tensor.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: The tensor with copied values.

        """
        try:
            return super().copy_(*args, **kwargs)
        except Exception as e:
            print(f"ignoring 'copy_' on tensor: {e}")

    def __deepcopy__(self, *args, **kwargs):
        """

        Create a deep copy of the tensor.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGMLTensor: The deep copied tensor.

        """
        new = super().__deepcopy__(*args, **kwargs)
        new.tensor_type = getattr(self, "tensor_type", None)
        new.tensor_shape = getattr(self, "tensor_shape", new.data.shape)
        new.patches = getattr(self, "patches", []).copy()
        return new

    @property
    def shape(self):
        """

        Get the shape of the tensor.



        Returns:

            torch.Size: The shape of the tensor.

        """
        if not hasattr(self, "tensor_shape"):
            self.tensor_shape = self.size()
        return self.tensor_shape


def gguf_sd_loader(path: str, handle_prefix: str = "model.diffusion_model."):
    """#### Load a GGUF file into a state dict.



    #### Args:

        - `path` (str): The path to the GGUF file.

        - `handle_prefix` (str, optional): The prefix to handle. Defaults to "model.diffusion_model.".



    #### Returns:

        - `dict`: The loaded state dict.

    """
    reader = gguf.GGUFReader(path)

    # filter and strip prefix
    has_prefix = False
    if handle_prefix is not None:
        prefix_len = len(handle_prefix)
        tensor_names = set(tensor.name for tensor in reader.tensors)
        has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)

    tensors = []
    for tensor in reader.tensors:
        sd_key = tensor_name = tensor.name
        if has_prefix:
            if not tensor_name.startswith(handle_prefix):
                continue
            sd_key = tensor_name[prefix_len:]
        tensors.append((sd_key, tensor))

    # detect and verify architecture
    compat = None
    arch_str = None
    arch_field = reader.get_field("general.architecture")
    if arch_field is not None:
        if (
            len(arch_field.types) != 1
            or arch_field.types[0] != gguf.GGUFValueType.STRING
        ):
            raise TypeError(
                f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}"
            )
        arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8")
        if arch_str not in {"flux", "sd1", "sdxl", "t5", "t5encoder"}:
            raise ValueError(
                f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder but got {arch_str!r}"
            )

    # main loading loop
    state_dict = {}
    qtype_dict = {}
    for sd_key, tensor in tensors:
        tensor_name = tensor.name
        tensor_type_str = str(tensor.tensor_type)
        torch_tensor = torch.from_numpy(tensor.data)  # mmap

        shape = gguf_sd_loader_get_orig_shape(reader, tensor_name)
        if shape is None:
            shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
            # Workaround for stable-diffusion.cpp SDXL detection.
            if compat == "sd.cpp" and arch_str == "sdxl":
                if any(
                    [
                        tensor_name.endswith(x)
                        for x in (".proj_in.weight", ".proj_out.weight")
                    ]
                ):
                    while len(shape) > 2 and shape[-1] == 1:
                        shape = shape[:-1]

        # add to state dict
        if tensor.tensor_type in {
            gguf.GGMLQuantizationType.F32,
            gguf.GGMLQuantizationType.F16,
        }:
            torch_tensor = torch_tensor.view(*shape)
        state_dict[sd_key] = GGMLTensor(
            torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape
        )
        qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1

    # sanity check debug print
    print("\nggml_sd_loader:")
    for k, v in qtype_dict.items():
        print(f" {k:30}{v:3}")

    return state_dict


class GGUFModelPatcher(ModelPatcher.ModelPatcher):
    patch_on_device = False

    def unpatch_model(self, device_to=None, unpatch_weights=True):
        """

        Unpatch the model.



        Args:

            device_to (torch.device, optional): The device to move the model to. Defaults to None.

            unpatch_weights (bool, optional): Whether to unpatch the weights. Defaults to True.



        Returns:

            GGUFModelPatcher: The unpatched model.

        """
        if unpatch_weights:
            for p in self.model.parameters():
                if is_torch_compatible(p):
                    continue
                patches = getattr(p, "patches", [])
                if len(patches) > 0:
                    p.patches = []
        self.object_patches = {}
        # TODO: Find another way to not unload after patches
        return super().unpatch_model(
            device_to=device_to, unpatch_weights=unpatch_weights
        )

    mmap_released = False

    def load(self, *args, force_patch_weights=False, **kwargs):
        """

        Load the model.



        Args:

            *args: Variable length argument list.

            force_patch_weights (bool, optional): Whether to force patch weights. Defaults to False.

            **kwargs: Arbitrary keyword arguments.

        """
        super().load(*args, force_patch_weights=True, **kwargs)

        # make sure nothing stays linked to mmap after first load
        if not self.mmap_released:
            linked = []
            if kwargs.get("lowvram_model_memory", 0) > 0:
                for n, m in self.model.named_modules():
                    if hasattr(m, "weight"):
                        device = getattr(m.weight, "device", None)
                        if device == self.offload_device:
                            linked.append((n, m))
                            continue
                    if hasattr(m, "bias"):
                        device = getattr(m.bias, "device", None)
                        if device == self.offload_device:
                            linked.append((n, m))
                            continue
            if linked:
                print(f"Attempting to release mmap ({len(linked)})")
                for n, m in linked:
                    # TODO: possible to OOM, find better way to detach
                    m.to(self.load_device).to(self.offload_device)
            self.mmap_released = True

    def add_object_patch(self, name, obj):
            self.object_patches[name] = obj

    def clone(self, *args, **kwargs):
        """

        Clone the model patcher.



        Args:

            *args: Variable length argument list.

            **kwargs: Arbitrary keyword arguments.



        Returns:

            GGUFModelPatcher: The cloned model patcher.

        """
        n = GGUFModelPatcher(
            self.model,
            self.load_device,
            self.offload_device,
            self.size,
            weight_inplace_update=self.weight_inplace_update,
        )
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
        n.patches_uuid = self.patches_uuid

        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
        n.patch_on_device = getattr(self, "patch_on_device", False)
        return n


class UnetLoaderGGUF:
    def load_unet(

        self,

        unet_name: str,

        dequant_dtype: str = None,

        patch_dtype: str = None,

        patch_on_device: bool = None,

    ) -> tuple:
        """

        Load the UNet model.



        Args:

            unet_name (str): The name of the UNet model.

            dequant_dtype (str, optional): The dequantization data type. Defaults to None.

            patch_dtype (str, optional): The patch data type. Defaults to None.

            patch_on_device (bool, optional): Whether to patch on device. Defaults to None.



        Returns:

            tuple: The loaded model.

        """
        ops = GGMLOps()

        if dequant_dtype in ("default", None):
            ops.Linear.dequant_dtype = None
        elif dequant_dtype in ["target"]:
            ops.Linear.dequant_dtype = dequant_dtype
        else:
            ops.Linear.dequant_dtype = getattr(torch, dequant_dtype)

        if patch_dtype in ("default", None):
            ops.Linear.patch_dtype = None
        elif patch_dtype in ["target"]:
            ops.Linear.patch_dtype = patch_dtype
        else:
            ops.Linear.patch_dtype = getattr(torch, patch_dtype)

        unet_path = "./_internal/unet/" + unet_name
        sd = gguf_sd_loader(unet_path)
        model = ModelPatcher.load_diffusion_model_state_dict(
            sd, model_options={"custom_operations": ops}
        )
        if model is None:
            logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
            raise RuntimeError(
                "ERROR: Could not detect model type of: {}".format(unet_path)
            )
        model = GGUFModelPatcher.clone(model)
        model.patch_on_device = patch_on_device
        return (model,)


clip_sd_map = {
    "enc.": "encoder.",
    ".blk.": ".block.",
    "token_embd": "shared",
    "output_norm": "final_layer_norm",
    "attn_q": "layer.0.SelfAttention.q",
    "attn_k": "layer.0.SelfAttention.k",
    "attn_v": "layer.0.SelfAttention.v",
    "attn_o": "layer.0.SelfAttention.o",
    "attn_norm": "layer.0.layer_norm",
    "attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
    "ffn_up": "layer.1.DenseReluDense.wi_1",
    "ffn_down": "layer.1.DenseReluDense.wo",
    "ffn_gate": "layer.1.DenseReluDense.wi_0",
    "ffn_norm": "layer.1.layer_norm",
}

clip_name_dict = {
    "stable_diffusion": Clip.CLIPType.STABLE_DIFFUSION,
    "sdxl": Clip.CLIPType.STABLE_DIFFUSION,
    "sd3": Clip.CLIPType.SD3,
    "flux": Clip.CLIPType.FLUX,
}


def gguf_clip_loader(path: str) -> dict:
    """#### Load a CLIP model from a GGUF file.



    #### Args:

        - `path` (str): The path to the GGUF file.



    #### Returns:

        - `dict`: The loaded CLIP model.

    """
    raw_sd = gguf_sd_loader(path)
    assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!"
    sd = {}
    for k, v in raw_sd.items():
        for s, d in clip_sd_map.items():
            k = k.replace(s, d)
        sd[k] = v
    return sd


class CLIPLoaderGGUF:
    def load_data(self, ckpt_paths: list) -> list:
        """

        Load data from checkpoint paths.



        Args:

            ckpt_paths (list): List of checkpoint paths.



        Returns:

            list: List of loaded data.

        """
        clip_data = []
        for p in ckpt_paths:
            if p.endswith(".gguf"):
                clip_data.append(gguf_clip_loader(p))
            else:
                sd = util.load_torch_file(p, safe_load=True)
                clip_data.append(
                    {
                        k: GGMLTensor(
                            v,
                            tensor_type=gguf.GGMLQuantizationType.F16,
                            tensor_shape=v.shape,
                        )
                        for k, v in sd.items()
                    }
                )
        return clip_data

    def load_patcher(self, clip_paths: list, clip_type: str, clip_data: list) -> Clip:
        """

        Load the model patcher.



        Args:

            clip_paths (list): List of clip paths.

            clip_type (str): The type of the clip.

            clip_data (list): List of clip data.



        Returns:

            Clip: The loaded clip.

        """
        clip = Clip.load_text_encoder_state_dicts(
            clip_type=clip_type,
            state_dicts=clip_data,
            model_options={
                "custom_operations": GGMLOps,
                "initial_device": Device.text_encoder_offload_device(),
            },
            embedding_directory="models/embeddings",
        )
        clip.patcher = GGUFModelPatcher.clone(clip.patcher)

        # for some reason this is just missing in some SAI checkpoints
        if getattr(clip.cond_stage_model, "clip_l", None) is not None:
            if (
                getattr(
                    clip.cond_stage_model.clip_l.transformer.text_projection.weight,
                    "tensor_shape",
                    None,
                )
                is None
            ):
                clip.cond_stage_model.clip_l.transformer.text_projection = (
                    cast.manual_cast.Linear(768, 768)
                )
        if getattr(clip.cond_stage_model, "clip_g", None) is not None:
            if (
                getattr(
                    clip.cond_stage_model.clip_g.transformer.text_projection.weight,
                    "tensor_shape",
                    None,
                )
                is None
            ):
                clip.cond_stage_model.clip_g.transformer.text_projection = (
                    cast.manual_cast.Linear(1280, 1280)
                )

        return clip


class DualCLIPLoaderGGUF(CLIPLoaderGGUF):
    def load_clip(self, clip_name1: str, clip_name2: str, type: str) -> tuple:
        """

        Load dual clips.



        Args:

            clip_name1 (str): The name of the first clip.

            clip_name2 (str): The name of the second clip.

            type (str): The type of the clip.



        Returns:

            tuple: The loaded clips.

        """
        clip_path1 = "./_internal/clip/" + clip_name1
        clip_path2 = "./_internal/clip/" + clip_name2
        clip_paths = (clip_path1, clip_path2)
        clip_type = clip_name_dict.get(type, Clip.CLIPType.STABLE_DIFFUSION)
        return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),)


class CLIPTextEncodeFlux:
    def encode(

        self,

        clip: Clip,

        clip_l: str,

        t5xxl: str,

        guidance: str,

        flux_enabled: bool = False,

    ) -> tuple:
        """

        Encode text using CLIP and T5XXL.



        Args:

            clip (Clip): The clip object.

            clip_l (str): The clip text.

            t5xxl (str): The T5XXL text.

            guidance (str): The guidance text.

            flux_enabled (bool, optional): Whether flux is enabled. Defaults to False.



        Returns:

            tuple: The encoded text.

        """
        tokens = clip.tokenize(clip_l)
        tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]

        output = clip.encode_from_tokens(
            tokens, return_pooled=True, return_dict=True, flux_enabled=flux_enabled
        )
        cond = output.pop("cond")
        output["guidance"] = guidance
        return ([[cond, output]],)


class ConditioningZeroOut:
    def zero_out(self, conditioning: list) -> list:
        """

        Zero out the conditioning.



        Args:

            conditioning (list): The conditioning list.



        Returns:

            list: The zeroed out conditioning.

        """
        c = []
        for t in conditioning:
            d = t[1].copy()
            pooled_output = d.get("pooled_output", None)
            if pooled_output is not None:
                d["pooled_output"] = torch.zeros_like(pooled_output)
            n = [torch.zeros_like(t[0]), d]
            c.append(n)
        return (c,)