Aatricks's picture
Upload folder using huggingface_hub
d9a2e19 verified
import logging
import platform
import sys
from enum import Enum
from typing import Tuple, Union
import packaging.version
import psutil
import torch
if packaging.version.parse(torch.__version__) >= packaging.version.parse("1.12.0"):
torch.backends.cuda.matmul.allow_tf32 = True
class VRAMState(Enum):
"""#### Enum for VRAM states.
"""
DISABLED = 0 # No vram present: no need to move _internal to vram
NO_VRAM = 1 # Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but _internal still need to be moved between both.
class CPUState(Enum):
"""#### Enum for CPU states.
"""
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
xpu_available = False
directml_enabled = False
try:
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
import torch.mps
except:
pass
def is_intel_xpu() -> bool:
"""#### Check if Intel XPU is available.
#### Returns:
- `bool`: Whether Intel XPU is available.
"""
global cpu_state
global xpu_available
if cpu_state == CPUState.GPU:
if xpu_available:
return True
return False
def get_torch_device() -> torch.device:
"""#### Get the torch device.
#### Returns:
- `torch.device`: The torch device.
"""
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if is_intel_xpu():
return torch.device("xpu", torch.xpu.current_device())
else:
if torch.cuda.is_available():
return torch.device(torch.cuda.current_device())
else:
return torch.device("cpu")
def get_total_memory(dev: torch.device = None, torch_total_too: bool = False) -> int:
"""#### Get the total memory.
#### Args:
- `dev` (torch.device, optional): The device. Defaults to None.
- `torch_total_too` (bool, optional): Whether to get the total memory in PyTorch. Defaults to False.
#### Returns:
- `int`: The total memory.
"""
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024
mem_total_torch = mem_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats["reserved_bytes.all.current"]
mem_total_torch = mem_reserved
mem_total = torch.xpu.get_device_properties(dev).total_memory
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats["reserved_bytes.all.current"]
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info(
"Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)
)
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
except:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
logging.info("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
logging.warning(
"\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images."
)
logging.warning(
"Please downgrade or upgrade xformers to a different version.\n"
)
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia() -> bool:
"""#### Checks if user has an Nvidia GPU
#### Returns
- `bool`: Whether the GPU is Nvidia
"""
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
return False
ENABLE_PYTORCH_ATTENTION = False
VAE_DTYPE = torch.float32
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION is False:
ENABLE_PYTORCH_ATTENTION = True
if (
torch.cuda.is_bf16_supported()
and torch.cuda.get_device_properties(torch.cuda.current_device()).major
>= 8
):
VAE_DTYPE = torch.bfloat16
except:
pass
if is_intel_xpu():
VAE_DTYPE = torch.bfloat16
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
FORCE_FP32 = False
FORCE_FP16 = False
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.info(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = False
if DISABLE_SMART_MEMORY:
logging.info("Disabling smart memory management")
def get_torch_device_name(device: torch.device) -> str:
"""#### Get the name of the torch compatible device
#### Args:
- `device` (torch.device): the device
#### Returns:
- `str`: the name of the device
"""
if hasattr(device, "type"):
if device.type == "cuda":
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(
device, torch.cuda.get_device_name(device), allocator_backend
)
else:
return "{}".format(device.type)
elif is_intel_xpu():
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
logging.info("VAE dtype: {}".format(VAE_DTYPE))
current_loaded_models = []
def module_size(module: torch.nn.Module) -> int:
"""#### Get the size of a module
#### Args:
- `module` (torch.nn.Module): The module
#### Returns:
- `int`: The size of the module
"""
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
"""#### Class to load a model
"""
def __init__(self, model: torch.nn.Module):
"""#### Initialize the class
#### Args:
- `model`: The model
"""
self.model = model
self.device = model.load_device
self.weights_loaded = False
self.real_model = None
def model_memory(self):
"""#### Get the model memory
#### Returns:
- `int`: The model memory
"""
return self.model.model_size()
def model_offloaded_memory(self):
"""#### Get the offloaded model memory
#### Returns:
- `int`: The offloaded model memory
"""
return self.model.model_size() - self.model.loaded_size()
def model_memory_required(self, device: torch.device) -> int:
"""#### Get the required model memory
#### Args:
- `device`: The device
#### Returns:
- `int`: The required model memory
"""
if hasattr(self.model, 'current_loaded_device') and device == self.model.current_loaded_device():
return self.model_offloaded_memory()
else:
return self.model_memory()
def model_load(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
"""#### Load the model
#### Args:
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The real model
"""
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
try:
if hasattr(self.model, "patch_model_lowvram") and lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(
device_to=patch_model_to,
lowvram_model_memory=lowvram_model_memory,
force_patch_weights=force_patch_weights,
)
else:
self.real_model = self.model.patch_model(
device_to=patch_model_to, patch_weights=load_weights
)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
self.weights_loaded = True
return self.real_model
def model_load_flux(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
"""#### Load the model
#### Args:
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The real model
"""
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
if self.model.loaded_size() > 0:
use_more_vram = lowvram_model_memory
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram)
else:
try:
self.real_model = self.model.patch_model_flux(
device_to=patch_model_to,
lowvram_model_memory=lowvram_model_memory,
load_weights=load_weights,
force_patch_weights=force_patch_weights,
)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if (
is_intel_xpu()
and "ipex" in globals()
and self.real_model is not None
):
import ipex
with torch.no_grad():
self.real_model = ipex.optimize(
self.real_model.eval(),
inplace=True,
graph_mode=True,
concat_linear=True,
)
self.weights_loaded = True
return self.real_model
def should_reload_model(self, force_patch_weights: bool = False) -> bool:
"""#### Checks if the model should be reloaded
#### Args:
- `force_patch_weights` (bool, optional): If model reloading should be enforced. Defaults to False.
#### Returns:
- `bool`: Whether the model should be reloaded
"""
if force_patch_weights and self.model.lowvram_patch_counter > 0:
return True
return False
def model_unload(self, unpatch_weights: bool = True) -> None:
"""#### Unloads the patched model
#### Args:
- `unpatch_weights` (bool, optional): Whether the weights should be unpatched. Defaults to True.
"""
self.model.unpatch_model(
self.model.offload_device, unpatch_weights=unpatch_weights
)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
self.real_model = None
def model_use_more_vram(self, extra_memory: int) -> int:
"""#### Use more VRAM
#### Args:
- `extra_memory`: The extra memory
"""
return self.model.partially_load(self.device, extra_memory)
def __eq__(self, other: torch.nn.Module) -> bool:
"""#### Verify if the model is equal to another
#### Args:
- `other` (torch.nn.Module): the other model
#### Returns:
- `bool`: Whether the two models are equal
"""
return self.model is other.model
def minimum_inference_memory() -> int:
"""#### The minimum memory requirement for inference, equals to 1024^3
#### Returns:
- `int`: the memory requirement
"""
return 1024 * 1024 * 1024
def unload_model_clones(model: torch.nn.Module, unload_weights_only:bool = True, force_unload: bool = True) -> bool:
"""#### Unloads the model clones
#### Args:
- `model` (torch.nn.Module): The model
- `unload_weights_only` (bool, optional): Whether to unload only the weights. Defaults to True.
- `force_unload` (bool, optional): Whether to force the unload. Defaults to True.
#### Returns:
- `bool`: Whether the model was unloaded
"""
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
if len(to_unload) == 0:
return True
same_weights = 0
if same_weights == len(to_unload):
unload_weight = False
else:
unload_weight = True
if not force_unload:
if unload_weights_only and unload_weight is False:
return None
for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
return unload_weight
def free_memory(memory_required: int, device: torch.device, keep_loaded: list = []) -> None:
"""#### Free memory
#### Args:
- `memory_required` (int): The required memory
- `device` (torch.device): The device
- `keep_loaded` (list, optional): The list of loaded models to keep. Defaults to [].
"""
unloaded_model = []
can_unload = []
for i in range(len(current_loaded_models) - 1, -1, -1):
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
can_unload.append(
(sys.getrefcount(shift_model.model), shift_model.model_memory(), i)
)
for x in sorted(can_unload):
i = x[-1]
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
break
current_loaded_models[i].model_unload()
unloaded_model.append(i)
for i in sorted(unloaded_model, reverse=True):
current_loaded_models.pop(i)
if len(unloaded_model) > 0:
soft_empty_cache()
else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(
device, torch_free_too=True
)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()
def use_more_memory(extra_memory: int, loaded_models: list, device: torch.device) -> None:
"""#### Use more memory
#### Args:
- `extra_memory` (int): The extra memory
- `loaded_models` (list): The loaded models
- `device` (torch.device): The device
"""
for m in loaded_models:
if m.device == device:
extra_memory -= m.model_use_more_vram(extra_memory)
if extra_memory <= 0:
break
WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
EXTRA_RESERVED_VRAM = (
600 * 1024 * 1024
) # Windows is higher because of the shared vram issue
def extra_reserved_memory() -> int:
"""#### Extra reserved memory
#### Returns:
- `int`: The extra reserved memory
"""
return EXTRA_RESERVED_VRAM
def offloaded_memory(loaded_models: list, device: torch.device) -> int:
"""#### Offloaded memory
#### Args:
- `loaded_models` (list): The loaded models
- `device` (torch.device): The device
#### Returns:
- `int`: The offloaded memory
"""
offloaded_mem = 0
for m in loaded_models:
if m.device == device:
offloaded_mem += m.model_offloaded_memory()
return offloaded_mem
def load_models_gpu(models: list, memory_required: int = 0, force_patch_weights: bool = False, minimum_memory_required=None, force_full_load=False, flux_enabled: bool = False) -> None:
"""#### Load models on the GPU
#### Args:
- `models`(list): The models
- `memory_required` (int, optional): The required memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
- `minimum_memory_required` (int, optional): The minimum memory required. Defaults to None.
- `force_full_load` (bool, optional
- `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False.
"""
global vram_state
if not flux_enabled:
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
loaded = None
try:
loaded_model_index = current_loaded_models.index(loaded_model)
except:
loaded_model_index = None
if loaded_model_index is not None:
loaded = current_loaded_models[loaded_model_index]
if loaded.should_reload_model(force_patch_weights=force_patch_weights):
current_loaded_models.pop(loaded_model_index).model_unload(
unpatch_weights=True
)
loaded = None
else:
models_already_loaded.append(loaded)
if loaded is None:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
logging.info(
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
)
total_memory_required = {}
for loaded_model in models_to_load:
if (
unload_model_clones(
loaded_model.model, unload_weights_only=True, force_unload=False
)
is True
): # unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(
total_memory_required[device] * 1.3 + extra_mem,
device,
models_already_loaded,
)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(
loaded_model.model, unload_weights_only=False, force_unload=False
) # unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (
vram_set_state == VRAMState.LOW_VRAM
or vram_set_state == VRAMState.NORMAL_VRAM
):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(
max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3)
)
if model_size > (
current_free_mem - inference_memory
): # only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
loaded_model.model_load(
lowvram_model_memory, force_patch_weights=force_patch_weights
)
current_loaded_models.insert(0, loaded_model)
return
else:
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
if minimum_memory_required is None:
minimum_memory_required = extra_mem
else:
minimum_memory_required = max(
inference_memory, minimum_memory_required + extra_reserved_memory()
)
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
loaded = None
try:
loaded_model_index = current_loaded_models.index(loaded_model)
except:
loaded_model_index = None
if loaded_model_index is not None:
loaded = current_loaded_models[loaded_model_index]
if loaded.should_reload_model(
force_patch_weights=force_patch_weights
): # TODO: cleanup this model reload logic
current_loaded_models.pop(loaded_model_index).model_unload(
unpatch_weights=True
)
loaded = None
else:
loaded.currently_used = True
models_already_loaded.append(loaded)
if loaded is None:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(
extra_mem + offloaded_memory(models_already_loaded, d),
d,
models_already_loaded,
)
free_mem = get_free_memory(d)
if free_mem < minimum_memory_required:
logging.info(
"Unloading models for lowram load."
) # TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
models_to_load = free_memory(minimum_memory_required, d)
logging.info("{} models unloaded.".format(len(models_to_load)))
else:
use_more_memory(
free_mem - minimum_memory_required, models_already_loaded, d
)
if len(models_to_load) == 0:
return
logging.info(
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
)
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(
loaded_model.model, unload_weights_only=True, force_unload=False
) # unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_already_loaded:
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(
loaded_model.model, unload_weights_only=False, force_unload=False
) # unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(
total_memory_required[device] * 1.1 + extra_mem,
device,
models_already_loaded,
)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if (
lowvram_available
and (
vram_set_state == VRAMState.LOW_VRAM
or vram_set_state == VRAMState.NORMAL_VRAM
)
and not force_full_load
):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = max(
64 * (1024 * 1024),
(current_free_mem - minimum_memory_required),
min(
current_free_mem * 0.4,
current_free_mem - minimum_inference_memory(),
),
)
if (
model_size <= lowvram_model_memory
): # only switch to lowvram if really necessary
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
loaded_model.model_load_flux(
lowvram_model_memory, force_patch_weights=force_patch_weights
)
current_loaded_models.insert(0, loaded_model)
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_mem = get_free_memory(d)
if free_mem > minimum_memory_required:
use_more_memory(
free_mem - minimum_memory_required, models_already_loaded, d
)
return
def load_model_gpu(model: torch.nn.Module, flux_enabled:bool = False) -> None:
"""#### Load a model on the GPU
#### Args:
- `model` (torch.nn.Module): The model
- `flux_enable` (bool, optional): Whether flux is enabled. Defaults to False.
"""
return load_models_gpu([model], flux_enabled=flux_enabled)
def cleanup_models(keep_clone_weights_loaded:bool = False):
"""#### Cleanup the models
#### Args:
- `keep_clone_weights_loaded` (bool, optional): Whether to keep the clone weights loaded. Defaults to False.
"""
to_delete = []
for i in range(len(current_loaded_models)):
if sys.getrefcount(current_loaded_models[i].model) <= 2:
if not keep_clone_weights_loaded:
to_delete = [i] + to_delete
elif (
sys.getrefcount(current_loaded_models[i].real_model) <= 3
): # references from .real_model + the .model
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
def dtype_size(dtype: torch.dtype) -> int:
"""#### Get the size of a dtype
#### Args:
- `dtype` (torch.dtype): The dtype
#### Returns:
- `int`: The size of the dtype
"""
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
elif dtype == torch.float32:
dtype_size = 4
else:
try:
dtype_size = dtype.itemsize
except: # Old pytorch doesn't have .itemsize
pass
return dtype_size
def unet_offload_device() -> torch.device:
"""#### Get the offload device for UNet
#### Returns:
- `torch.device`: The offload device
"""
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype) -> torch.device:
"""#### Get the initial load device for UNet
#### Args:
- `parameters` (int): The parameters
- `dtype` (torch.dtype): The dtype
#### Returns:
- `torch.device`: The initial load device
"""
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def unet_dtype(
device: torch.dtype = None,
model_params: int = 0,
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],
) -> torch.dtype:
"""#### Get the dtype for UNet
#### Args:
- `device` (torch.dtype, optional): The device. Defaults to None.
- `model_params` (int, optional): The model parameters. Defaults to 0.
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].
#### Returns:
- `torch.dtype`: The dtype
"""
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes:
return torch.float16
if should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
def unet_manual_cast(
weight_dtype: torch.dtype,
inference_device: torch.device,
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],
) -> torch.dtype:
"""#### Manual cast for UNet
#### Args:
- `weight_dtype` (torch.dtype): The dtype of the weights
- `inference_device` (torch.device): The device used for inference
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].
#### Returns:
- `torch.dtype`: The dtype
"""
if weight_dtype == torch.float32:
return None
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
bf16_supported = should_use_bf16(inference_device)
if bf16_supported and weight_dtype == torch.bfloat16:
return None
if fp16_supported and torch.float16 in supported_dtypes:
return torch.float16
elif bf16_supported and torch.bfloat16 in supported_dtypes:
return torch.bfloat16
else:
return torch.float32
def text_encoder_offload_device() -> torch.device:
"""#### Get the offload device for the text encoder
#### Returns:
- `torch.device`: The offload device
"""
return torch.device("cpu")
def text_encoder_device() -> torch.device:
"""#### Get the device for the text encoder
#### Returns:
- `torch.device`: The device
"""
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def text_encoder_initial_device(load_device: torch.device, offload_device: torch.device, model_size: int = 0) -> torch.device:
"""#### Get the initial device for the text encoder
#### Args:
- `load_device` (torch.device): The load device
- `offload_device` (torch.device): The offload device
- `model_size` (int, optional): The model size. Defaults to 0.
#### Returns:
- `torch.device`: The initial device
"""
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
return offload_device
if is_device_mps(load_device):
return offload_device
mem_l = get_free_memory(load_device)
mem_o = get_free_memory(offload_device)
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
return load_device
else:
return offload_device
def text_encoder_dtype(device: torch.device = None) -> torch.dtype:
"""#### Get the dtype for the text encoder
#### Args:
- `device` (torch.device, optional): The device used by the text encoder. Defaults to None.
Returns:
torch.dtype: The dtype
"""
if is_device_cpu(device):
return torch.float16
return torch.float16
def intermediate_device() -> torch.device:
"""#### Get the intermediate device
#### Returns:
- `torch.device`: The intermediate device
"""
return torch.device("cpu")
def vae_device() -> torch.device:
"""#### Get the VAE device
#### Returns:
- `torch.device`: The VAE device
"""
return get_torch_device()
def vae_offload_device() -> torch.device:
"""#### Get the offload device for VAE
#### Returns:
- `torch.device`: The offload device
"""
return torch.device("cpu")
def vae_dtype():
"""#### Get the dtype for VAE
#### Returns:
- `torch.dtype`: The dtype
"""
global VAE_DTYPE
return VAE_DTYPE
def get_autocast_device(dev: torch.device) -> str:
"""#### Get the autocast device
#### Args:
- `dev` (torch.device): The device
#### Returns:
- `str`: The autocast device type
"""
if hasattr(dev, "type"):
return dev.type
return "cuda"
def supports_dtype(device: torch.device, dtype: torch.dtype) -> bool:
"""#### Check if the device supports the dtype
#### Args:
- `device` (torch.device): The device to check
- `dtype` (torch.dtype): The dtype to check support
#### Returns:
- `bool`: Whether the dtype is supported by the device
"""
if dtype == torch.float32:
return True
if is_device_cpu(device):
return False
if dtype == torch.float16:
return True
if dtype == torch.bfloat16:
return True
return False
def device_supports_non_blocking(device: torch.device) -> bool:
"""#### Check if the device supports non-blocking
#### Args:
- `device` (torch.device): The device to check
#### Returns:
- `bool`: Whether the device supports non-blocking
"""
if is_device_mps(device):
return False # pytorch bug? mps doesn't support non blocking
return True
def supports_cast(device: torch.device, dtype: torch.dtype): # TODO
"""#### Check if the device supports casting
#### Args:
- `device`: The device
- `dtype`: The dtype
#### Returns:
- `bool`: Whether the device supports casting
"""
if dtype == torch.float32:
return True
if dtype == torch.float16:
return True
if directml_enabled:
return False
if dtype == torch.bfloat16:
return True
if is_device_mps(device):
return False
if dtype == torch.float8_e4m3fn:
return True
if dtype == torch.float8_e5m2:
return True
return False
def cast_to_device(tensor: torch.Tensor, device: torch.device, dtype: torch.dtype, copy: bool = False) -> torch.Tensor:
"""#### Cast a tensor to a device
#### Args:
- `tensor` (torch.Tensor): The tensor to cast
- `device` (torch.device): The device to cast the tensor to
- `dtype` (torch.dtype): The dtype precision to cast to
- `copy` (bool, optional): Whether to copy the tensor. Defaults to False.
#### Returns:
- `torch.Tensor`: The tensor cast to the device
"""
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
device_supports_cast = True
elif tensor.dtype == torch.bfloat16:
if hasattr(device, "type") and device.type.startswith("cuda"):
device_supports_cast = True
elif is_intel_xpu():
device_supports_cast = True
non_blocking = device_supports_non_blocking(device)
if device_supports_cast:
if copy:
if tensor.device == device:
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(
dtype, non_blocking=non_blocking
)
else:
return tensor.to(device, non_blocking=non_blocking).to(
dtype, non_blocking=non_blocking
)
else:
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
def pick_weight_dtype(dtype: torch.dtype, fallback_dtype: torch.dtype, device: torch.device) -> torch.dtype:
"""#### Pick the weight dtype
#### Args:
- `dtype`: The dtype
- `fallback_dtype`: The fallback dtype
- `device`: The device
#### Returns:
- `torch.dtype`: The weight dtype
"""
if dtype is None:
dtype = fallback_dtype
elif dtype_size(dtype) > dtype_size(fallback_dtype):
dtype = fallback_dtype
if not supports_cast(device, dtype):
dtype = fallback_dtype
return dtype
def xformers_enabled() -> bool:
"""#### Check if xformers is enabled
#### Returns:
- `bool`: Whether xformers is enabled
"""
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if is_intel_xpu():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae() -> bool:
"""#### Check if xformers is enabled for VAE
#### Returns:
- `bool`: Whether xformers is enabled for VAE
"""
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled() -> bool:
"""#### Check if PyTorch attention is enabled
#### Returns:
- `bool`: Whether PyTorch attention is enabled
"""
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention() -> bool:
"""#### Check if PyTorch flash attention is enabled and supported.
#### Returns:
- `bool`: True if PyTorch flash attention is enabled and supported, False otherwise.
"""
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
if is_nvidia(): # pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev: torch.device = None, torch_free_too: bool = False) -> Union[int, Tuple[int, int]]:
"""#### Get the free memory available on the device.
#### Args:
- `dev` (torch.device, optional): The device to check memory for. Defaults to None.
- `torch_free_too` (bool, optional): Whether to return both total and torch free memory. Defaults to False.
#### Returns:
- `int` or `Tuple[int, int]`: The free memory available. If `torch_free_too` is True, returns a tuple of total and torch free memory.
"""
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024
mem_free_torch = mem_free_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_torch = mem_reserved - mem_active
mem_free_xpu = (
torch.xpu.get_device_properties(dev).total_memory - mem_reserved
)
mem_free_total = mem_free_xpu + mem_free_torch
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def cpu_mode() -> bool:
"""#### Check if the current mode is CPU.
#### Returns:
- `bool`: True if the current mode is CPU, False otherwise.
"""
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode() -> bool:
"""#### Check if the current mode is MPS.
#### Returns:
- `bool`: True if the current mode is MPS, False otherwise.
"""
global cpu_state
return cpu_state == CPUState.MPS
def is_device_type(device: torch.device, type: str) -> bool:
"""#### Check if the device is of a specific type.
#### Args:
- `device` (torch.device): The device to check.
- `type` (str): The type to check for.
#### Returns:
- `bool`: True if the device is of the specified type, False otherwise.
"""
if hasattr(device, "type"):
if device.type == type:
return True
return False
def is_device_cpu(device: torch.device) -> bool:
"""#### Check if the device is a CPU.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is a CPU, False otherwise.
"""
return is_device_type(device, "cpu")
def is_device_mps(device: torch.device) -> bool:
"""#### Check if the device is an MPS.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is an MPS, False otherwise.
"""
return is_device_type(device, "mps")
def is_device_cuda(device: torch.device) -> bool:
"""#### Check if the device is a CUDA device.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is a CUDA device, False otherwise.
"""
return is_device_type(device, "cuda")
def should_use_fp16(
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False
) -> bool:
"""#### Determine if FP16 should be used.
#### Args:
- `device` (torch.device, optional): The device to check. Defaults to None.
- `model_params` (int, optional): The number of model parameters. Defaults to 0.
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.
#### Returns:
- `bool`: True if FP16 should be used, False otherwise.
"""
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
return True
if torch.version.hip:
return True
if torch.cuda.is_available():
props = torch.cuda.get_device_properties("cuda")
else:
return False
if props.major >= 8:
return True
if props.major < 6:
return False
fp16_works = False
nvidia_10_series = [
"1080",
"1070",
"titan x",
"p3000",
"p3200",
"p4000",
"p4200",
"p5000",
"p5200",
"p6000",
"1060",
"1050",
"p40",
"p100",
"p6",
"p4",
]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works or manual_cast:
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
nvidia_16_series = [
"1660",
"1650",
"1630",
"T500",
"T550",
"T600",
"MX550",
"MX450",
"CMP 30HX",
"T2000",
"T1000",
"T1200",
]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def should_use_bf16(
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False
) -> bool:
"""#### Determine if BF16 should be used.
#### Args:
- `device` (torch.device, optional): The device to check. Defaults to None.
- `model_params` (int, optional): The number of model parameters. Defaults to 0.
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.
#### Returns:
- `bool`: True if BF16 should be used, False otherwise.
"""
if device is not None:
if is_device_cpu(device):
return False
if device is not None:
if is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False
if is_intel_xpu():
return True
if device is None:
device = torch.device("cuda")
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
return False
def soft_empty_cache(force: bool = False) -> None:
"""#### Softly empty the cache.
#### Args:
- `force` (bool, optional): Whether to force emptying the cache. Defaults to False.
"""
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif is_intel_xpu():
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if (
force or is_nvidia()
): # This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models() -> None:
"""#### Unload all models."""
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight: torch.Tensor, model: torch.nn.Module, key: str) -> torch.Tensor:
"""#### Resolve low VRAM weight.
#### Args:
- `weight` (torch.Tensor): The weight tensor.
- `model` (torch.nn.Module): The model.
- `key` (str): The key.
#### Returns:
- `torch.Tensor`: The resolved weight tensor.
"""
return weight