Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import platform | |
import sys | |
from enum import Enum | |
from typing import Tuple, Union | |
import packaging.version | |
import psutil | |
import torch | |
if packaging.version.parse(torch.__version__) >= packaging.version.parse("1.12.0"): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class VRAMState(Enum): | |
"""#### Enum for VRAM states. | |
""" | |
DISABLED = 0 # No vram present: no need to move _internal to vram | |
NO_VRAM = 1 # Very low vram: enable all the options to save vram | |
LOW_VRAM = 2 | |
NORMAL_VRAM = 3 | |
HIGH_VRAM = 4 | |
SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but _internal still need to be moved between both. | |
class CPUState(Enum): | |
"""#### Enum for CPU states. | |
""" | |
GPU = 0 | |
CPU = 1 | |
MPS = 2 | |
# Determine VRAM State | |
vram_state = VRAMState.NORMAL_VRAM | |
set_vram_to = VRAMState.NORMAL_VRAM | |
cpu_state = CPUState.GPU | |
total_vram = 0 | |
lowvram_available = True | |
xpu_available = False | |
directml_enabled = False | |
try: | |
if torch.xpu.is_available(): | |
xpu_available = True | |
except: | |
pass | |
try: | |
if torch.backends.mps.is_available(): | |
cpu_state = CPUState.MPS | |
import torch.mps | |
except: | |
pass | |
def is_intel_xpu() -> bool: | |
"""#### Check if Intel XPU is available. | |
#### Returns: | |
- `bool`: Whether Intel XPU is available. | |
""" | |
global cpu_state | |
global xpu_available | |
if cpu_state == CPUState.GPU: | |
if xpu_available: | |
return True | |
return False | |
def get_torch_device() -> torch.device: | |
"""#### Get the torch device. | |
#### Returns: | |
- `torch.device`: The torch device. | |
""" | |
global directml_enabled | |
global cpu_state | |
if directml_enabled: | |
global directml_device | |
return directml_device | |
if cpu_state == CPUState.MPS: | |
return torch.device("mps") | |
if cpu_state == CPUState.CPU: | |
return torch.device("cpu") | |
else: | |
if is_intel_xpu(): | |
return torch.device("xpu", torch.xpu.current_device()) | |
else: | |
if torch.cuda.is_available(): | |
return torch.device(torch.cuda.current_device()) | |
else: | |
return torch.device("cpu") | |
def get_total_memory(dev: torch.device = None, torch_total_too: bool = False) -> int: | |
"""#### Get the total memory. | |
#### Args: | |
- `dev` (torch.device, optional): The device. Defaults to None. | |
- `torch_total_too` (bool, optional): Whether to get the total memory in PyTorch. Defaults to False. | |
#### Returns: | |
- `int`: The total memory. | |
""" | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"): | |
mem_total = psutil.virtual_memory().total | |
mem_total_torch = mem_total | |
else: | |
if directml_enabled: | |
mem_total = 1024 * 1024 * 1024 | |
mem_total_torch = mem_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_reserved = stats["reserved_bytes.all.current"] | |
mem_total_torch = mem_reserved | |
mem_total = torch.xpu.get_device_properties(dev).total_memory | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_reserved = stats["reserved_bytes.all.current"] | |
_, mem_total_cuda = torch.cuda.mem_get_info(dev) | |
mem_total_torch = mem_reserved | |
mem_total = mem_total_cuda | |
if torch_total_too: | |
return (mem_total, mem_total_torch) | |
else: | |
return mem_total | |
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) | |
total_ram = psutil.virtual_memory().total / (1024 * 1024) | |
logging.info( | |
"Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram) | |
) | |
try: | |
OOM_EXCEPTION = torch.cuda.OutOfMemoryError | |
except: | |
OOM_EXCEPTION = Exception | |
XFORMERS_VERSION = "" | |
XFORMERS_ENABLED_VAE = True | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILABLE = True | |
try: | |
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library | |
except: | |
pass | |
try: | |
XFORMERS_VERSION = xformers.version.__version__ | |
logging.info("xformers version: {}".format(XFORMERS_VERSION)) | |
if XFORMERS_VERSION.startswith("0.0.18"): | |
logging.warning( | |
"\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images." | |
) | |
logging.warning( | |
"Please downgrade or upgrade xformers to a different version.\n" | |
) | |
XFORMERS_ENABLED_VAE = False | |
except: | |
pass | |
except: | |
XFORMERS_IS_AVAILABLE = False | |
def is_nvidia() -> bool: | |
"""#### Checks if user has an Nvidia GPU | |
#### Returns | |
- `bool`: Whether the GPU is Nvidia | |
""" | |
global cpu_state | |
if cpu_state == CPUState.GPU: | |
if torch.version.cuda: | |
return True | |
return False | |
ENABLE_PYTORCH_ATTENTION = False | |
VAE_DTYPE = torch.float32 | |
try: | |
if is_nvidia(): | |
torch_version = torch.version.__version__ | |
if int(torch_version[0]) >= 2: | |
if ENABLE_PYTORCH_ATTENTION is False: | |
ENABLE_PYTORCH_ATTENTION = True | |
if ( | |
torch.cuda.is_bf16_supported() | |
and torch.cuda.get_device_properties(torch.cuda.current_device()).major | |
>= 8 | |
): | |
VAE_DTYPE = torch.bfloat16 | |
except: | |
pass | |
if is_intel_xpu(): | |
VAE_DTYPE = torch.bfloat16 | |
if ENABLE_PYTORCH_ATTENTION: | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
FORCE_FP32 = False | |
FORCE_FP16 = False | |
if lowvram_available: | |
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): | |
vram_state = set_vram_to | |
if cpu_state != CPUState.GPU: | |
vram_state = VRAMState.DISABLED | |
if cpu_state == CPUState.MPS: | |
vram_state = VRAMState.SHARED | |
logging.info(f"Set vram state to: {vram_state.name}") | |
DISABLE_SMART_MEMORY = False | |
if DISABLE_SMART_MEMORY: | |
logging.info("Disabling smart memory management") | |
def get_torch_device_name(device: torch.device) -> str: | |
"""#### Get the name of the torch compatible device | |
#### Args: | |
- `device` (torch.device): the device | |
#### Returns: | |
- `str`: the name of the device | |
""" | |
if hasattr(device, "type"): | |
if device.type == "cuda": | |
try: | |
allocator_backend = torch.cuda.get_allocator_backend() | |
except: | |
allocator_backend = "" | |
return "{} {} : {}".format( | |
device, torch.cuda.get_device_name(device), allocator_backend | |
) | |
else: | |
return "{}".format(device.type) | |
elif is_intel_xpu(): | |
return "{} {}".format(device, torch.xpu.get_device_name(device)) | |
else: | |
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) | |
try: | |
logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) | |
except: | |
logging.warning("Could not pick default device.") | |
logging.info("VAE dtype: {}".format(VAE_DTYPE)) | |
current_loaded_models = [] | |
def module_size(module: torch.nn.Module) -> int: | |
"""#### Get the size of a module | |
#### Args: | |
- `module` (torch.nn.Module): The module | |
#### Returns: | |
- `int`: The size of the module | |
""" | |
module_mem = 0 | |
sd = module.state_dict() | |
for k in sd: | |
t = sd[k] | |
module_mem += t.nelement() * t.element_size() | |
return module_mem | |
class LoadedModel: | |
"""#### Class to load a model | |
""" | |
def __init__(self, model: torch.nn.Module): | |
"""#### Initialize the class | |
#### Args: | |
- `model`: The model | |
""" | |
self.model = model | |
self.device = model.load_device | |
self.weights_loaded = False | |
self.real_model = None | |
def model_memory(self): | |
"""#### Get the model memory | |
#### Returns: | |
- `int`: The model memory | |
""" | |
return self.model.model_size() | |
def model_offloaded_memory(self): | |
"""#### Get the offloaded model memory | |
#### Returns: | |
- `int`: The offloaded model memory | |
""" | |
return self.model.model_size() - self.model.loaded_size() | |
def model_memory_required(self, device: torch.device) -> int: | |
"""#### Get the required model memory | |
#### Args: | |
- `device`: The device | |
#### Returns: | |
- `int`: The required model memory | |
""" | |
if hasattr(self.model, 'current_loaded_device') and device == self.model.current_loaded_device(): | |
return self.model_offloaded_memory() | |
else: | |
return self.model_memory() | |
def model_load(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module: | |
"""#### Load the model | |
#### Args: | |
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0. | |
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. | |
#### Returns: | |
- `torch.nn.Module`: The real model | |
""" | |
patch_model_to = self.device | |
self.model.model_patches_to(self.device) | |
self.model.model_patches_to(self.model.model_dtype()) | |
load_weights = not self.weights_loaded | |
try: | |
if hasattr(self.model, "patch_model_lowvram") and lowvram_model_memory > 0 and load_weights: | |
self.real_model = self.model.patch_model_lowvram( | |
device_to=patch_model_to, | |
lowvram_model_memory=lowvram_model_memory, | |
force_patch_weights=force_patch_weights, | |
) | |
else: | |
self.real_model = self.model.patch_model( | |
device_to=patch_model_to, patch_weights=load_weights | |
) | |
except Exception as e: | |
self.model.unpatch_model(self.model.offload_device) | |
self.model_unload() | |
raise e | |
self.weights_loaded = True | |
return self.real_model | |
def model_load_flux(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module: | |
"""#### Load the model | |
#### Args: | |
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0. | |
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. | |
#### Returns: | |
- `torch.nn.Module`: The real model | |
""" | |
patch_model_to = self.device | |
self.model.model_patches_to(self.device) | |
self.model.model_patches_to(self.model.model_dtype()) | |
load_weights = not self.weights_loaded | |
if self.model.loaded_size() > 0: | |
use_more_vram = lowvram_model_memory | |
if use_more_vram == 0: | |
use_more_vram = 1e32 | |
self.model_use_more_vram(use_more_vram) | |
else: | |
try: | |
self.real_model = self.model.patch_model_flux( | |
device_to=patch_model_to, | |
lowvram_model_memory=lowvram_model_memory, | |
load_weights=load_weights, | |
force_patch_weights=force_patch_weights, | |
) | |
except Exception as e: | |
self.model.unpatch_model(self.model.offload_device) | |
self.model_unload() | |
raise e | |
if ( | |
is_intel_xpu() | |
and "ipex" in globals() | |
and self.real_model is not None | |
): | |
import ipex | |
with torch.no_grad(): | |
self.real_model = ipex.optimize( | |
self.real_model.eval(), | |
inplace=True, | |
graph_mode=True, | |
concat_linear=True, | |
) | |
self.weights_loaded = True | |
return self.real_model | |
def should_reload_model(self, force_patch_weights: bool = False) -> bool: | |
"""#### Checks if the model should be reloaded | |
#### Args: | |
- `force_patch_weights` (bool, optional): If model reloading should be enforced. Defaults to False. | |
#### Returns: | |
- `bool`: Whether the model should be reloaded | |
""" | |
if force_patch_weights and self.model.lowvram_patch_counter > 0: | |
return True | |
return False | |
def model_unload(self, unpatch_weights: bool = True) -> None: | |
"""#### Unloads the patched model | |
#### Args: | |
- `unpatch_weights` (bool, optional): Whether the weights should be unpatched. Defaults to True. | |
""" | |
self.model.unpatch_model( | |
self.model.offload_device, unpatch_weights=unpatch_weights | |
) | |
self.model.model_patches_to(self.model.offload_device) | |
self.weights_loaded = self.weights_loaded and not unpatch_weights | |
self.real_model = None | |
def model_use_more_vram(self, extra_memory: int) -> int: | |
"""#### Use more VRAM | |
#### Args: | |
- `extra_memory`: The extra memory | |
""" | |
return self.model.partially_load(self.device, extra_memory) | |
def __eq__(self, other: torch.nn.Module) -> bool: | |
"""#### Verify if the model is equal to another | |
#### Args: | |
- `other` (torch.nn.Module): the other model | |
#### Returns: | |
- `bool`: Whether the two models are equal | |
""" | |
return self.model is other.model | |
def minimum_inference_memory() -> int: | |
"""#### The minimum memory requirement for inference, equals to 1024^3 | |
#### Returns: | |
- `int`: the memory requirement | |
""" | |
return 1024 * 1024 * 1024 | |
def unload_model_clones(model: torch.nn.Module, unload_weights_only:bool = True, force_unload: bool = True) -> bool: | |
"""#### Unloads the model clones | |
#### Args: | |
- `model` (torch.nn.Module): The model | |
- `unload_weights_only` (bool, optional): Whether to unload only the weights. Defaults to True. | |
- `force_unload` (bool, optional): Whether to force the unload. Defaults to True. | |
#### Returns: | |
- `bool`: Whether the model was unloaded | |
""" | |
to_unload = [] | |
for i in range(len(current_loaded_models)): | |
if model.is_clone(current_loaded_models[i].model): | |
to_unload = [i] + to_unload | |
if len(to_unload) == 0: | |
return True | |
same_weights = 0 | |
if same_weights == len(to_unload): | |
unload_weight = False | |
else: | |
unload_weight = True | |
if not force_unload: | |
if unload_weights_only and unload_weight is False: | |
return None | |
for i in to_unload: | |
logging.debug("unload clone {} {}".format(i, unload_weight)) | |
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) | |
return unload_weight | |
def free_memory(memory_required: int, device: torch.device, keep_loaded: list = []) -> None: | |
"""#### Free memory | |
#### Args: | |
- `memory_required` (int): The required memory | |
- `device` (torch.device): The device | |
- `keep_loaded` (list, optional): The list of loaded models to keep. Defaults to []. | |
""" | |
unloaded_model = [] | |
can_unload = [] | |
for i in range(len(current_loaded_models) - 1, -1, -1): | |
shift_model = current_loaded_models[i] | |
if shift_model.device == device: | |
if shift_model not in keep_loaded: | |
can_unload.append( | |
(sys.getrefcount(shift_model.model), shift_model.model_memory(), i) | |
) | |
for x in sorted(can_unload): | |
i = x[-1] | |
if not DISABLE_SMART_MEMORY: | |
if get_free_memory(device) > memory_required: | |
break | |
current_loaded_models[i].model_unload() | |
unloaded_model.append(i) | |
for i in sorted(unloaded_model, reverse=True): | |
current_loaded_models.pop(i) | |
if len(unloaded_model) > 0: | |
soft_empty_cache() | |
else: | |
if vram_state != VRAMState.HIGH_VRAM: | |
mem_free_total, mem_free_torch = get_free_memory( | |
device, torch_free_too=True | |
) | |
if mem_free_torch > mem_free_total * 0.25: | |
soft_empty_cache() | |
def use_more_memory(extra_memory: int, loaded_models: list, device: torch.device) -> None: | |
"""#### Use more memory | |
#### Args: | |
- `extra_memory` (int): The extra memory | |
- `loaded_models` (list): The loaded models | |
- `device` (torch.device): The device | |
""" | |
for m in loaded_models: | |
if m.device == device: | |
extra_memory -= m.model_use_more_vram(extra_memory) | |
if extra_memory <= 0: | |
break | |
WINDOWS = any(platform.win32_ver()) | |
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024 | |
if WINDOWS: | |
EXTRA_RESERVED_VRAM = ( | |
600 * 1024 * 1024 | |
) # Windows is higher because of the shared vram issue | |
def extra_reserved_memory() -> int: | |
"""#### Extra reserved memory | |
#### Returns: | |
- `int`: The extra reserved memory | |
""" | |
return EXTRA_RESERVED_VRAM | |
def offloaded_memory(loaded_models: list, device: torch.device) -> int: | |
"""#### Offloaded memory | |
#### Args: | |
- `loaded_models` (list): The loaded models | |
- `device` (torch.device): The device | |
#### Returns: | |
- `int`: The offloaded memory | |
""" | |
offloaded_mem = 0 | |
for m in loaded_models: | |
if m.device == device: | |
offloaded_mem += m.model_offloaded_memory() | |
return offloaded_mem | |
def load_models_gpu(models: list, memory_required: int = 0, force_patch_weights: bool = False, minimum_memory_required=None, force_full_load=False, flux_enabled: bool = False) -> None: | |
"""#### Load models on the GPU | |
#### Args: | |
- `models`(list): The models | |
- `memory_required` (int, optional): The required memory. Defaults to 0. | |
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. | |
- `minimum_memory_required` (int, optional): The minimum memory required. Defaults to None. | |
- `force_full_load` (bool, optional | |
- `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False. | |
""" | |
global vram_state | |
if not flux_enabled: | |
inference_memory = minimum_inference_memory() | |
extra_mem = max(inference_memory, memory_required) | |
models = set(models) | |
models_to_load = [] | |
models_already_loaded = [] | |
for x in models: | |
loaded_model = LoadedModel(x) | |
loaded = None | |
try: | |
loaded_model_index = current_loaded_models.index(loaded_model) | |
except: | |
loaded_model_index = None | |
if loaded_model_index is not None: | |
loaded = current_loaded_models[loaded_model_index] | |
if loaded.should_reload_model(force_patch_weights=force_patch_weights): | |
current_loaded_models.pop(loaded_model_index).model_unload( | |
unpatch_weights=True | |
) | |
loaded = None | |
else: | |
models_already_loaded.append(loaded) | |
if loaded is None: | |
if hasattr(x, "model"): | |
logging.info(f"Requested to load {x.model.__class__.__name__}") | |
models_to_load.append(loaded_model) | |
if len(models_to_load) == 0: | |
devs = set(map(lambda a: a.device, models_already_loaded)) | |
for d in devs: | |
if d != torch.device("cpu"): | |
free_memory(extra_mem, d, models_already_loaded) | |
return | |
logging.info( | |
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}" | |
) | |
total_memory_required = {} | |
for loaded_model in models_to_load: | |
if ( | |
unload_model_clones( | |
loaded_model.model, unload_weights_only=True, force_unload=False | |
) | |
is True | |
): # unload clones where the weights are different | |
total_memory_required[loaded_model.device] = total_memory_required.get( | |
loaded_model.device, 0 | |
) + loaded_model.model_memory_required(loaded_model.device) | |
for device in total_memory_required: | |
if device != torch.device("cpu"): | |
free_memory( | |
total_memory_required[device] * 1.3 + extra_mem, | |
device, | |
models_already_loaded, | |
) | |
for loaded_model in models_to_load: | |
weights_unloaded = unload_model_clones( | |
loaded_model.model, unload_weights_only=False, force_unload=False | |
) # unload the rest of the clones where the weights can stay loaded | |
if weights_unloaded is not None: | |
loaded_model.weights_loaded = not weights_unloaded | |
for loaded_model in models_to_load: | |
model = loaded_model.model | |
torch_dev = model.load_device | |
if is_device_cpu(torch_dev): | |
vram_set_state = VRAMState.DISABLED | |
else: | |
vram_set_state = vram_state | |
lowvram_model_memory = 0 | |
if lowvram_available and ( | |
vram_set_state == VRAMState.LOW_VRAM | |
or vram_set_state == VRAMState.NORMAL_VRAM | |
): | |
model_size = loaded_model.model_memory_required(torch_dev) | |
current_free_mem = get_free_memory(torch_dev) | |
lowvram_model_memory = int( | |
max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3) | |
) | |
if model_size > ( | |
current_free_mem - inference_memory | |
): # only switch to lowvram if really necessary | |
vram_set_state = VRAMState.LOW_VRAM | |
else: | |
lowvram_model_memory = 0 | |
if vram_set_state == VRAMState.NO_VRAM: | |
lowvram_model_memory = 64 * 1024 * 1024 | |
loaded_model.model_load( | |
lowvram_model_memory, force_patch_weights=force_patch_weights | |
) | |
current_loaded_models.insert(0, loaded_model) | |
return | |
else: | |
inference_memory = minimum_inference_memory() | |
extra_mem = max(inference_memory, memory_required + extra_reserved_memory()) | |
if minimum_memory_required is None: | |
minimum_memory_required = extra_mem | |
else: | |
minimum_memory_required = max( | |
inference_memory, minimum_memory_required + extra_reserved_memory() | |
) | |
models = set(models) | |
models_to_load = [] | |
models_already_loaded = [] | |
for x in models: | |
loaded_model = LoadedModel(x) | |
loaded = None | |
try: | |
loaded_model_index = current_loaded_models.index(loaded_model) | |
except: | |
loaded_model_index = None | |
if loaded_model_index is not None: | |
loaded = current_loaded_models[loaded_model_index] | |
if loaded.should_reload_model( | |
force_patch_weights=force_patch_weights | |
): # TODO: cleanup this model reload logic | |
current_loaded_models.pop(loaded_model_index).model_unload( | |
unpatch_weights=True | |
) | |
loaded = None | |
else: | |
loaded.currently_used = True | |
models_already_loaded.append(loaded) | |
if loaded is None: | |
if hasattr(x, "model"): | |
logging.info(f"Requested to load {x.model.__class__.__name__}") | |
models_to_load.append(loaded_model) | |
if len(models_to_load) == 0: | |
devs = set(map(lambda a: a.device, models_already_loaded)) | |
for d in devs: | |
if d != torch.device("cpu"): | |
free_memory( | |
extra_mem + offloaded_memory(models_already_loaded, d), | |
d, | |
models_already_loaded, | |
) | |
free_mem = get_free_memory(d) | |
if free_mem < minimum_memory_required: | |
logging.info( | |
"Unloading models for lowram load." | |
) # TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed. | |
models_to_load = free_memory(minimum_memory_required, d) | |
logging.info("{} models unloaded.".format(len(models_to_load))) | |
else: | |
use_more_memory( | |
free_mem - minimum_memory_required, models_already_loaded, d | |
) | |
if len(models_to_load) == 0: | |
return | |
logging.info( | |
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}" | |
) | |
total_memory_required = {} | |
for loaded_model in models_to_load: | |
unload_model_clones( | |
loaded_model.model, unload_weights_only=True, force_unload=False | |
) # unload clones where the weights are different | |
total_memory_required[loaded_model.device] = total_memory_required.get( | |
loaded_model.device, 0 | |
) + loaded_model.model_memory_required(loaded_model.device) | |
for loaded_model in models_already_loaded: | |
total_memory_required[loaded_model.device] = total_memory_required.get( | |
loaded_model.device, 0 | |
) + loaded_model.model_memory_required(loaded_model.device) | |
for loaded_model in models_to_load: | |
weights_unloaded = unload_model_clones( | |
loaded_model.model, unload_weights_only=False, force_unload=False | |
) # unload the rest of the clones where the weights can stay loaded | |
if weights_unloaded is not None: | |
loaded_model.weights_loaded = not weights_unloaded | |
for device in total_memory_required: | |
if device != torch.device("cpu"): | |
free_memory( | |
total_memory_required[device] * 1.1 + extra_mem, | |
device, | |
models_already_loaded, | |
) | |
for loaded_model in models_to_load: | |
model = loaded_model.model | |
torch_dev = model.load_device | |
if is_device_cpu(torch_dev): | |
vram_set_state = VRAMState.DISABLED | |
else: | |
vram_set_state = vram_state | |
lowvram_model_memory = 0 | |
if ( | |
lowvram_available | |
and ( | |
vram_set_state == VRAMState.LOW_VRAM | |
or vram_set_state == VRAMState.NORMAL_VRAM | |
) | |
and not force_full_load | |
): | |
model_size = loaded_model.model_memory_required(torch_dev) | |
current_free_mem = get_free_memory(torch_dev) | |
lowvram_model_memory = max( | |
64 * (1024 * 1024), | |
(current_free_mem - minimum_memory_required), | |
min( | |
current_free_mem * 0.4, | |
current_free_mem - minimum_inference_memory(), | |
), | |
) | |
if ( | |
model_size <= lowvram_model_memory | |
): # only switch to lowvram if really necessary | |
lowvram_model_memory = 0 | |
if vram_set_state == VRAMState.NO_VRAM: | |
lowvram_model_memory = 64 * 1024 * 1024 | |
loaded_model.model_load_flux( | |
lowvram_model_memory, force_patch_weights=force_patch_weights | |
) | |
current_loaded_models.insert(0, loaded_model) | |
devs = set(map(lambda a: a.device, models_already_loaded)) | |
for d in devs: | |
if d != torch.device("cpu"): | |
free_mem = get_free_memory(d) | |
if free_mem > minimum_memory_required: | |
use_more_memory( | |
free_mem - minimum_memory_required, models_already_loaded, d | |
) | |
return | |
def load_model_gpu(model: torch.nn.Module, flux_enabled:bool = False) -> None: | |
"""#### Load a model on the GPU | |
#### Args: | |
- `model` (torch.nn.Module): The model | |
- `flux_enable` (bool, optional): Whether flux is enabled. Defaults to False. | |
""" | |
return load_models_gpu([model], flux_enabled=flux_enabled) | |
def cleanup_models(keep_clone_weights_loaded:bool = False): | |
"""#### Cleanup the models | |
#### Args: | |
- `keep_clone_weights_loaded` (bool, optional): Whether to keep the clone weights loaded. Defaults to False. | |
""" | |
to_delete = [] | |
for i in range(len(current_loaded_models)): | |
if sys.getrefcount(current_loaded_models[i].model) <= 2: | |
if not keep_clone_weights_loaded: | |
to_delete = [i] + to_delete | |
elif ( | |
sys.getrefcount(current_loaded_models[i].real_model) <= 3 | |
): # references from .real_model + the .model | |
to_delete = [i] + to_delete | |
for i in to_delete: | |
x = current_loaded_models.pop(i) | |
x.model_unload() | |
del x | |
def dtype_size(dtype: torch.dtype) -> int: | |
"""#### Get the size of a dtype | |
#### Args: | |
- `dtype` (torch.dtype): The dtype | |
#### Returns: | |
- `int`: The size of the dtype | |
""" | |
dtype_size = 4 | |
if dtype == torch.float16 or dtype == torch.bfloat16: | |
dtype_size = 2 | |
elif dtype == torch.float32: | |
dtype_size = 4 | |
else: | |
try: | |
dtype_size = dtype.itemsize | |
except: # Old pytorch doesn't have .itemsize | |
pass | |
return dtype_size | |
def unet_offload_device() -> torch.device: | |
"""#### Get the offload device for UNet | |
#### Returns: | |
- `torch.device`: The offload device | |
""" | |
if vram_state == VRAMState.HIGH_VRAM: | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
def unet_inital_load_device(parameters, dtype) -> torch.device: | |
"""#### Get the initial load device for UNet | |
#### Args: | |
- `parameters` (int): The parameters | |
- `dtype` (torch.dtype): The dtype | |
#### Returns: | |
- `torch.device`: The initial load device | |
""" | |
torch_dev = get_torch_device() | |
if vram_state == VRAMState.HIGH_VRAM: | |
return torch_dev | |
cpu_dev = torch.device("cpu") | |
if DISABLE_SMART_MEMORY: | |
return cpu_dev | |
model_size = dtype_size(dtype) * parameters | |
mem_dev = get_free_memory(torch_dev) | |
mem_cpu = get_free_memory(cpu_dev) | |
if mem_dev > mem_cpu and model_size < mem_dev: | |
return torch_dev | |
else: | |
return cpu_dev | |
def unet_dtype( | |
device: torch.dtype = None, | |
model_params: int = 0, | |
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32], | |
) -> torch.dtype: | |
"""#### Get the dtype for UNet | |
#### Args: | |
- `device` (torch.dtype, optional): The device. Defaults to None. | |
- `model_params` (int, optional): The model parameters. Defaults to 0. | |
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32]. | |
#### Returns: | |
- `torch.dtype`: The dtype | |
""" | |
if should_use_fp16(device=device, model_params=model_params, manual_cast=True): | |
if torch.float16 in supported_dtypes: | |
return torch.float16 | |
if should_use_bf16(device, model_params=model_params, manual_cast=True): | |
if torch.bfloat16 in supported_dtypes: | |
return torch.bfloat16 | |
return torch.float32 | |
# None means no manual cast | |
def unet_manual_cast( | |
weight_dtype: torch.dtype, | |
inference_device: torch.device, | |
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32], | |
) -> torch.dtype: | |
"""#### Manual cast for UNet | |
#### Args: | |
- `weight_dtype` (torch.dtype): The dtype of the weights | |
- `inference_device` (torch.device): The device used for inference | |
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32]. | |
#### Returns: | |
- `torch.dtype`: The dtype | |
""" | |
if weight_dtype == torch.float32: | |
return None | |
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) | |
if fp16_supported and weight_dtype == torch.float16: | |
return None | |
bf16_supported = should_use_bf16(inference_device) | |
if bf16_supported and weight_dtype == torch.bfloat16: | |
return None | |
if fp16_supported and torch.float16 in supported_dtypes: | |
return torch.float16 | |
elif bf16_supported and torch.bfloat16 in supported_dtypes: | |
return torch.bfloat16 | |
else: | |
return torch.float32 | |
def text_encoder_offload_device() -> torch.device: | |
"""#### Get the offload device for the text encoder | |
#### Returns: | |
- `torch.device`: The offload device | |
""" | |
return torch.device("cpu") | |
def text_encoder_device() -> torch.device: | |
"""#### Get the device for the text encoder | |
#### Returns: | |
- `torch.device`: The device | |
""" | |
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: | |
if should_use_fp16(prioritize_performance=False): | |
return get_torch_device() | |
else: | |
return torch.device("cpu") | |
else: | |
return torch.device("cpu") | |
def text_encoder_initial_device(load_device: torch.device, offload_device: torch.device, model_size: int = 0) -> torch.device: | |
"""#### Get the initial device for the text encoder | |
#### Args: | |
- `load_device` (torch.device): The load device | |
- `offload_device` (torch.device): The offload device | |
- `model_size` (int, optional): The model size. Defaults to 0. | |
#### Returns: | |
- `torch.device`: The initial device | |
""" | |
if load_device == offload_device or model_size <= 1024 * 1024 * 1024: | |
return offload_device | |
if is_device_mps(load_device): | |
return offload_device | |
mem_l = get_free_memory(load_device) | |
mem_o = get_free_memory(offload_device) | |
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l: | |
return load_device | |
else: | |
return offload_device | |
def text_encoder_dtype(device: torch.device = None) -> torch.dtype: | |
"""#### Get the dtype for the text encoder | |
#### Args: | |
- `device` (torch.device, optional): The device used by the text encoder. Defaults to None. | |
Returns: | |
torch.dtype: The dtype | |
""" | |
if is_device_cpu(device): | |
return torch.float16 | |
return torch.float16 | |
def intermediate_device() -> torch.device: | |
"""#### Get the intermediate device | |
#### Returns: | |
- `torch.device`: The intermediate device | |
""" | |
return torch.device("cpu") | |
def vae_device() -> torch.device: | |
"""#### Get the VAE device | |
#### Returns: | |
- `torch.device`: The VAE device | |
""" | |
return get_torch_device() | |
def vae_offload_device() -> torch.device: | |
"""#### Get the offload device for VAE | |
#### Returns: | |
- `torch.device`: The offload device | |
""" | |
return torch.device("cpu") | |
def vae_dtype(): | |
"""#### Get the dtype for VAE | |
#### Returns: | |
- `torch.dtype`: The dtype | |
""" | |
global VAE_DTYPE | |
return VAE_DTYPE | |
def get_autocast_device(dev: torch.device) -> str: | |
"""#### Get the autocast device | |
#### Args: | |
- `dev` (torch.device): The device | |
#### Returns: | |
- `str`: The autocast device type | |
""" | |
if hasattr(dev, "type"): | |
return dev.type | |
return "cuda" | |
def supports_dtype(device: torch.device, dtype: torch.dtype) -> bool: | |
"""#### Check if the device supports the dtype | |
#### Args: | |
- `device` (torch.device): The device to check | |
- `dtype` (torch.dtype): The dtype to check support | |
#### Returns: | |
- `bool`: Whether the dtype is supported by the device | |
""" | |
if dtype == torch.float32: | |
return True | |
if is_device_cpu(device): | |
return False | |
if dtype == torch.float16: | |
return True | |
if dtype == torch.bfloat16: | |
return True | |
return False | |
def device_supports_non_blocking(device: torch.device) -> bool: | |
"""#### Check if the device supports non-blocking | |
#### Args: | |
- `device` (torch.device): The device to check | |
#### Returns: | |
- `bool`: Whether the device supports non-blocking | |
""" | |
if is_device_mps(device): | |
return False # pytorch bug? mps doesn't support non blocking | |
return True | |
def supports_cast(device: torch.device, dtype: torch.dtype): # TODO | |
"""#### Check if the device supports casting | |
#### Args: | |
- `device`: The device | |
- `dtype`: The dtype | |
#### Returns: | |
- `bool`: Whether the device supports casting | |
""" | |
if dtype == torch.float32: | |
return True | |
if dtype == torch.float16: | |
return True | |
if directml_enabled: | |
return False | |
if dtype == torch.bfloat16: | |
return True | |
if is_device_mps(device): | |
return False | |
if dtype == torch.float8_e4m3fn: | |
return True | |
if dtype == torch.float8_e5m2: | |
return True | |
return False | |
def cast_to_device(tensor: torch.Tensor, device: torch.device, dtype: torch.dtype, copy: bool = False) -> torch.Tensor: | |
"""#### Cast a tensor to a device | |
#### Args: | |
- `tensor` (torch.Tensor): The tensor to cast | |
- `device` (torch.device): The device to cast the tensor to | |
- `dtype` (torch.dtype): The dtype precision to cast to | |
- `copy` (bool, optional): Whether to copy the tensor. Defaults to False. | |
#### Returns: | |
- `torch.Tensor`: The tensor cast to the device | |
""" | |
device_supports_cast = False | |
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: | |
device_supports_cast = True | |
elif tensor.dtype == torch.bfloat16: | |
if hasattr(device, "type") and device.type.startswith("cuda"): | |
device_supports_cast = True | |
elif is_intel_xpu(): | |
device_supports_cast = True | |
non_blocking = device_supports_non_blocking(device) | |
if device_supports_cast: | |
if copy: | |
if tensor.device == device: | |
return tensor.to(dtype, copy=copy, non_blocking=non_blocking) | |
return tensor.to(device, copy=copy, non_blocking=non_blocking).to( | |
dtype, non_blocking=non_blocking | |
) | |
else: | |
return tensor.to(device, non_blocking=non_blocking).to( | |
dtype, non_blocking=non_blocking | |
) | |
else: | |
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) | |
def pick_weight_dtype(dtype: torch.dtype, fallback_dtype: torch.dtype, device: torch.device) -> torch.dtype: | |
"""#### Pick the weight dtype | |
#### Args: | |
- `dtype`: The dtype | |
- `fallback_dtype`: The fallback dtype | |
- `device`: The device | |
#### Returns: | |
- `torch.dtype`: The weight dtype | |
""" | |
if dtype is None: | |
dtype = fallback_dtype | |
elif dtype_size(dtype) > dtype_size(fallback_dtype): | |
dtype = fallback_dtype | |
if not supports_cast(device, dtype): | |
dtype = fallback_dtype | |
return dtype | |
def xformers_enabled() -> bool: | |
"""#### Check if xformers is enabled | |
#### Returns: | |
- `bool`: Whether xformers is enabled | |
""" | |
global directml_enabled | |
global cpu_state | |
if cpu_state != CPUState.GPU: | |
return False | |
if is_intel_xpu(): | |
return False | |
if directml_enabled: | |
return False | |
return XFORMERS_IS_AVAILABLE | |
def xformers_enabled_vae() -> bool: | |
"""#### Check if xformers is enabled for VAE | |
#### Returns: | |
- `bool`: Whether xformers is enabled for VAE | |
""" | |
enabled = xformers_enabled() | |
if not enabled: | |
return False | |
return XFORMERS_ENABLED_VAE | |
def pytorch_attention_enabled() -> bool: | |
"""#### Check if PyTorch attention is enabled | |
#### Returns: | |
- `bool`: Whether PyTorch attention is enabled | |
""" | |
global ENABLE_PYTORCH_ATTENTION | |
return ENABLE_PYTORCH_ATTENTION | |
def pytorch_attention_flash_attention() -> bool: | |
"""#### Check if PyTorch flash attention is enabled and supported. | |
#### Returns: | |
- `bool`: True if PyTorch flash attention is enabled and supported, False otherwise. | |
""" | |
global ENABLE_PYTORCH_ATTENTION | |
if ENABLE_PYTORCH_ATTENTION: | |
if is_nvidia(): # pytorch flash attention only works on Nvidia | |
return True | |
return False | |
def get_free_memory(dev: torch.device = None, torch_free_too: bool = False) -> Union[int, Tuple[int, int]]: | |
"""#### Get the free memory available on the device. | |
#### Args: | |
- `dev` (torch.device, optional): The device to check memory for. Defaults to None. | |
- `torch_free_too` (bool, optional): Whether to return both total and torch free memory. Defaults to False. | |
#### Returns: | |
- `int` or `Tuple[int, int]`: The free memory available. If `torch_free_too` is True, returns a tuple of total and torch free memory. | |
""" | |
global directml_enabled | |
if dev is None: | |
dev = get_torch_device() | |
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"): | |
mem_free_total = psutil.virtual_memory().available | |
mem_free_torch = mem_free_total | |
else: | |
if directml_enabled: | |
mem_free_total = 1024 * 1024 * 1024 | |
mem_free_torch = mem_free_total | |
elif is_intel_xpu(): | |
stats = torch.xpu.memory_stats(dev) | |
mem_active = stats["active_bytes.all.current"] | |
mem_reserved = stats["reserved_bytes.all.current"] | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_xpu = ( | |
torch.xpu.get_device_properties(dev).total_memory - mem_reserved | |
) | |
mem_free_total = mem_free_xpu + mem_free_torch | |
else: | |
stats = torch.cuda.memory_stats(dev) | |
mem_active = stats["active_bytes.all.current"] | |
mem_reserved = stats["reserved_bytes.all.current"] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
if torch_free_too: | |
return (mem_free_total, mem_free_torch) | |
else: | |
return mem_free_total | |
def cpu_mode() -> bool: | |
"""#### Check if the current mode is CPU. | |
#### Returns: | |
- `bool`: True if the current mode is CPU, False otherwise. | |
""" | |
global cpu_state | |
return cpu_state == CPUState.CPU | |
def mps_mode() -> bool: | |
"""#### Check if the current mode is MPS. | |
#### Returns: | |
- `bool`: True if the current mode is MPS, False otherwise. | |
""" | |
global cpu_state | |
return cpu_state == CPUState.MPS | |
def is_device_type(device: torch.device, type: str) -> bool: | |
"""#### Check if the device is of a specific type. | |
#### Args: | |
- `device` (torch.device): The device to check. | |
- `type` (str): The type to check for. | |
#### Returns: | |
- `bool`: True if the device is of the specified type, False otherwise. | |
""" | |
if hasattr(device, "type"): | |
if device.type == type: | |
return True | |
return False | |
def is_device_cpu(device: torch.device) -> bool: | |
"""#### Check if the device is a CPU. | |
#### Args: | |
- `device` (torch.device): The device to check. | |
#### Returns: | |
- `bool`: True if the device is a CPU, False otherwise. | |
""" | |
return is_device_type(device, "cpu") | |
def is_device_mps(device: torch.device) -> bool: | |
"""#### Check if the device is an MPS. | |
#### Args: | |
- `device` (torch.device): The device to check. | |
#### Returns: | |
- `bool`: True if the device is an MPS, False otherwise. | |
""" | |
return is_device_type(device, "mps") | |
def is_device_cuda(device: torch.device) -> bool: | |
"""#### Check if the device is a CUDA device. | |
#### Args: | |
- `device` (torch.device): The device to check. | |
#### Returns: | |
- `bool`: True if the device is a CUDA device, False otherwise. | |
""" | |
return is_device_type(device, "cuda") | |
def should_use_fp16( | |
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False | |
) -> bool: | |
"""#### Determine if FP16 should be used. | |
#### Args: | |
- `device` (torch.device, optional): The device to check. Defaults to None. | |
- `model_params` (int, optional): The number of model parameters. Defaults to 0. | |
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True. | |
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False. | |
#### Returns: | |
- `bool`: True if FP16 should be used, False otherwise. | |
""" | |
global directml_enabled | |
if device is not None: | |
if is_device_cpu(device): | |
return False | |
if FORCE_FP16: | |
return True | |
if device is not None: | |
if is_device_mps(device): | |
return True | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if mps_mode(): | |
return True | |
if cpu_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
if torch.version.hip: | |
return True | |
if torch.cuda.is_available(): | |
props = torch.cuda.get_device_properties("cuda") | |
else: | |
return False | |
if props.major >= 8: | |
return True | |
if props.major < 6: | |
return False | |
fp16_works = False | |
nvidia_10_series = [ | |
"1080", | |
"1070", | |
"titan x", | |
"p3000", | |
"p3200", | |
"p4000", | |
"p4200", | |
"p5000", | |
"p5200", | |
"p6000", | |
"1060", | |
"1050", | |
"p40", | |
"p100", | |
"p6", | |
"p4", | |
] | |
for x in nvidia_10_series: | |
if x in props.name.lower(): | |
fp16_works = True | |
if fp16_works or manual_cast: | |
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory() | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
if props.major < 7: | |
return False | |
nvidia_16_series = [ | |
"1660", | |
"1650", | |
"1630", | |
"T500", | |
"T550", | |
"T600", | |
"MX550", | |
"MX450", | |
"CMP 30HX", | |
"T2000", | |
"T1000", | |
"T1200", | |
] | |
for x in nvidia_16_series: | |
if x in props.name: | |
return False | |
return True | |
def should_use_bf16( | |
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False | |
) -> bool: | |
"""#### Determine if BF16 should be used. | |
#### Args: | |
- `device` (torch.device, optional): The device to check. Defaults to None. | |
- `model_params` (int, optional): The number of model parameters. Defaults to 0. | |
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True. | |
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False. | |
#### Returns: | |
- `bool`: True if BF16 should be used, False otherwise. | |
""" | |
if device is not None: | |
if is_device_cpu(device): | |
return False | |
if device is not None: | |
if is_device_mps(device): | |
return False | |
if FORCE_FP32: | |
return False | |
if directml_enabled: | |
return False | |
if cpu_mode() or mps_mode(): | |
return False | |
if is_intel_xpu(): | |
return True | |
if device is None: | |
device = torch.device("cuda") | |
props = torch.cuda.get_device_properties(device) | |
if props.major >= 8: | |
return True | |
bf16_works = torch.cuda.is_bf16_supported() | |
if bf16_works or manual_cast: | |
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory() | |
if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
return True | |
return False | |
def soft_empty_cache(force: bool = False) -> None: | |
"""#### Softly empty the cache. | |
#### Args: | |
- `force` (bool, optional): Whether to force emptying the cache. Defaults to False. | |
""" | |
global cpu_state | |
if cpu_state == CPUState.MPS: | |
torch.mps.empty_cache() | |
elif is_intel_xpu(): | |
torch.xpu.empty_cache() | |
elif torch.cuda.is_available(): | |
if ( | |
force or is_nvidia() | |
): # This seems to make things worse on ROCm so I only do it for cuda | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
def unload_all_models() -> None: | |
"""#### Unload all models.""" | |
free_memory(1e30, get_torch_device()) | |
def resolve_lowvram_weight(weight: torch.Tensor, model: torch.nn.Module, key: str) -> torch.Tensor: | |
"""#### Resolve low VRAM weight. | |
#### Args: | |
- `weight` (torch.Tensor): The weight tensor. | |
- `model` (torch.nn.Module): The model. | |
- `key` (str): The key. | |
#### Returns: | |
- `torch.Tensor`: The resolved weight tensor. | |
""" | |
return weight |