Spaces:
Running
on
Zero
Running
on
Zero
File size: 51,647 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 |
import logging
import platform
import sys
from enum import Enum
from typing import Tuple, Union
import packaging.version
import psutil
import torch
if packaging.version.parse(torch.__version__) >= packaging.version.parse("1.12.0"):
torch.backends.cuda.matmul.allow_tf32 = True
class VRAMState(Enum):
"""#### Enum for VRAM states.
"""
DISABLED = 0 # No vram present: no need to move _internal to vram
NO_VRAM = 1 # Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but _internal still need to be moved between both.
class CPUState(Enum):
"""#### Enum for CPU states.
"""
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
xpu_available = False
directml_enabled = False
try:
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
import torch.mps
except:
pass
def is_intel_xpu() -> bool:
"""#### Check if Intel XPU is available.
#### Returns:
- `bool`: Whether Intel XPU is available.
"""
global cpu_state
global xpu_available
if cpu_state == CPUState.GPU:
if xpu_available:
return True
return False
def get_torch_device() -> torch.device:
"""#### Get the torch device.
#### Returns:
- `torch.device`: The torch device.
"""
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if is_intel_xpu():
return torch.device("xpu", torch.xpu.current_device())
else:
if torch.cuda.is_available():
return torch.device(torch.cuda.current_device())
else:
return torch.device("cpu")
def get_total_memory(dev: torch.device = None, torch_total_too: bool = False) -> int:
"""#### Get the total memory.
#### Args:
- `dev` (torch.device, optional): The device. Defaults to None.
- `torch_total_too` (bool, optional): Whether to get the total memory in PyTorch. Defaults to False.
#### Returns:
- `int`: The total memory.
"""
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024
mem_total_torch = mem_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats["reserved_bytes.all.current"]
mem_total_torch = mem_reserved
mem_total = torch.xpu.get_device_properties(dev).total_memory
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats["reserved_bytes.all.current"]
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info(
"Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)
)
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
except:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
logging.info("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
logging.warning(
"\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images."
)
logging.warning(
"Please downgrade or upgrade xformers to a different version.\n"
)
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia() -> bool:
"""#### Checks if user has an Nvidia GPU
#### Returns
- `bool`: Whether the GPU is Nvidia
"""
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
return False
ENABLE_PYTORCH_ATTENTION = False
VAE_DTYPE = torch.float32
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION is False:
ENABLE_PYTORCH_ATTENTION = True
if (
torch.cuda.is_bf16_supported()
and torch.cuda.get_device_properties(torch.cuda.current_device()).major
>= 8
):
VAE_DTYPE = torch.bfloat16
except:
pass
if is_intel_xpu():
VAE_DTYPE = torch.bfloat16
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
FORCE_FP32 = False
FORCE_FP16 = False
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.info(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = False
if DISABLE_SMART_MEMORY:
logging.info("Disabling smart memory management")
def get_torch_device_name(device: torch.device) -> str:
"""#### Get the name of the torch compatible device
#### Args:
- `device` (torch.device): the device
#### Returns:
- `str`: the name of the device
"""
if hasattr(device, "type"):
if device.type == "cuda":
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(
device, torch.cuda.get_device_name(device), allocator_backend
)
else:
return "{}".format(device.type)
elif is_intel_xpu():
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
logging.info("VAE dtype: {}".format(VAE_DTYPE))
current_loaded_models = []
def module_size(module: torch.nn.Module) -> int:
"""#### Get the size of a module
#### Args:
- `module` (torch.nn.Module): The module
#### Returns:
- `int`: The size of the module
"""
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
"""#### Class to load a model
"""
def __init__(self, model: torch.nn.Module):
"""#### Initialize the class
#### Args:
- `model`: The model
"""
self.model = model
self.device = model.load_device
self.weights_loaded = False
self.real_model = None
def model_memory(self):
"""#### Get the model memory
#### Returns:
- `int`: The model memory
"""
return self.model.model_size()
def model_offloaded_memory(self):
"""#### Get the offloaded model memory
#### Returns:
- `int`: The offloaded model memory
"""
return self.model.model_size() - self.model.loaded_size()
def model_memory_required(self, device: torch.device) -> int:
"""#### Get the required model memory
#### Args:
- `device`: The device
#### Returns:
- `int`: The required model memory
"""
if hasattr(self.model, 'current_loaded_device') and device == self.model.current_loaded_device():
return self.model_offloaded_memory()
else:
return self.model_memory()
def model_load(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
"""#### Load the model
#### Args:
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The real model
"""
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
try:
if hasattr(self.model, "patch_model_lowvram") and lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(
device_to=patch_model_to,
lowvram_model_memory=lowvram_model_memory,
force_patch_weights=force_patch_weights,
)
else:
self.real_model = self.model.patch_model(
device_to=patch_model_to, patch_weights=load_weights
)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
self.weights_loaded = True
return self.real_model
def model_load_flux(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module:
"""#### Load the model
#### Args:
- `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
#### Returns:
- `torch.nn.Module`: The real model
"""
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
load_weights = not self.weights_loaded
if self.model.loaded_size() > 0:
use_more_vram = lowvram_model_memory
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram)
else:
try:
self.real_model = self.model.patch_model_flux(
device_to=patch_model_to,
lowvram_model_memory=lowvram_model_memory,
load_weights=load_weights,
force_patch_weights=force_patch_weights,
)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if (
is_intel_xpu()
and "ipex" in globals()
and self.real_model is not None
):
import ipex
with torch.no_grad():
self.real_model = ipex.optimize(
self.real_model.eval(),
inplace=True,
graph_mode=True,
concat_linear=True,
)
self.weights_loaded = True
return self.real_model
def should_reload_model(self, force_patch_weights: bool = False) -> bool:
"""#### Checks if the model should be reloaded
#### Args:
- `force_patch_weights` (bool, optional): If model reloading should be enforced. Defaults to False.
#### Returns:
- `bool`: Whether the model should be reloaded
"""
if force_patch_weights and self.model.lowvram_patch_counter > 0:
return True
return False
def model_unload(self, unpatch_weights: bool = True) -> None:
"""#### Unloads the patched model
#### Args:
- `unpatch_weights` (bool, optional): Whether the weights should be unpatched. Defaults to True.
"""
self.model.unpatch_model(
self.model.offload_device, unpatch_weights=unpatch_weights
)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
self.real_model = None
def model_use_more_vram(self, extra_memory: int) -> int:
"""#### Use more VRAM
#### Args:
- `extra_memory`: The extra memory
"""
return self.model.partially_load(self.device, extra_memory)
def __eq__(self, other: torch.nn.Module) -> bool:
"""#### Verify if the model is equal to another
#### Args:
- `other` (torch.nn.Module): the other model
#### Returns:
- `bool`: Whether the two models are equal
"""
return self.model is other.model
def minimum_inference_memory() -> int:
"""#### The minimum memory requirement for inference, equals to 1024^3
#### Returns:
- `int`: the memory requirement
"""
return 1024 * 1024 * 1024
def unload_model_clones(model: torch.nn.Module, unload_weights_only:bool = True, force_unload: bool = True) -> bool:
"""#### Unloads the model clones
#### Args:
- `model` (torch.nn.Module): The model
- `unload_weights_only` (bool, optional): Whether to unload only the weights. Defaults to True.
- `force_unload` (bool, optional): Whether to force the unload. Defaults to True.
#### Returns:
- `bool`: Whether the model was unloaded
"""
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
if len(to_unload) == 0:
return True
same_weights = 0
if same_weights == len(to_unload):
unload_weight = False
else:
unload_weight = True
if not force_unload:
if unload_weights_only and unload_weight is False:
return None
for i in to_unload:
logging.debug("unload clone {} {}".format(i, unload_weight))
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)
return unload_weight
def free_memory(memory_required: int, device: torch.device, keep_loaded: list = []) -> None:
"""#### Free memory
#### Args:
- `memory_required` (int): The required memory
- `device` (torch.device): The device
- `keep_loaded` (list, optional): The list of loaded models to keep. Defaults to [].
"""
unloaded_model = []
can_unload = []
for i in range(len(current_loaded_models) - 1, -1, -1):
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
can_unload.append(
(sys.getrefcount(shift_model.model), shift_model.model_memory(), i)
)
for x in sorted(can_unload):
i = x[-1]
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
break
current_loaded_models[i].model_unload()
unloaded_model.append(i)
for i in sorted(unloaded_model, reverse=True):
current_loaded_models.pop(i)
if len(unloaded_model) > 0:
soft_empty_cache()
else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(
device, torch_free_too=True
)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()
def use_more_memory(extra_memory: int, loaded_models: list, device: torch.device) -> None:
"""#### Use more memory
#### Args:
- `extra_memory` (int): The extra memory
- `loaded_models` (list): The loaded models
- `device` (torch.device): The device
"""
for m in loaded_models:
if m.device == device:
extra_memory -= m.model_use_more_vram(extra_memory)
if extra_memory <= 0:
break
WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
EXTRA_RESERVED_VRAM = (
600 * 1024 * 1024
) # Windows is higher because of the shared vram issue
def extra_reserved_memory() -> int:
"""#### Extra reserved memory
#### Returns:
- `int`: The extra reserved memory
"""
return EXTRA_RESERVED_VRAM
def offloaded_memory(loaded_models: list, device: torch.device) -> int:
"""#### Offloaded memory
#### Args:
- `loaded_models` (list): The loaded models
- `device` (torch.device): The device
#### Returns:
- `int`: The offloaded memory
"""
offloaded_mem = 0
for m in loaded_models:
if m.device == device:
offloaded_mem += m.model_offloaded_memory()
return offloaded_mem
def load_models_gpu(models: list, memory_required: int = 0, force_patch_weights: bool = False, minimum_memory_required=None, force_full_load=False, flux_enabled: bool = False) -> None:
"""#### Load models on the GPU
#### Args:
- `models`(list): The models
- `memory_required` (int, optional): The required memory. Defaults to 0.
- `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False.
- `minimum_memory_required` (int, optional): The minimum memory required. Defaults to None.
- `force_full_load` (bool, optional
- `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False.
"""
global vram_state
if not flux_enabled:
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
loaded = None
try:
loaded_model_index = current_loaded_models.index(loaded_model)
except:
loaded_model_index = None
if loaded_model_index is not None:
loaded = current_loaded_models[loaded_model_index]
if loaded.should_reload_model(force_patch_weights=force_patch_weights):
current_loaded_models.pop(loaded_model_index).model_unload(
unpatch_weights=True
)
loaded = None
else:
models_already_loaded.append(loaded)
if loaded is None:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
logging.info(
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
)
total_memory_required = {}
for loaded_model in models_to_load:
if (
unload_model_clones(
loaded_model.model, unload_weights_only=True, force_unload=False
)
is True
): # unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(
total_memory_required[device] * 1.3 + extra_mem,
device,
models_already_loaded,
)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(
loaded_model.model, unload_weights_only=False, force_unload=False
) # unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (
vram_set_state == VRAMState.LOW_VRAM
or vram_set_state == VRAMState.NORMAL_VRAM
):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(
max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3)
)
if model_size > (
current_free_mem - inference_memory
): # only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
loaded_model.model_load(
lowvram_model_memory, force_patch_weights=force_patch_weights
)
current_loaded_models.insert(0, loaded_model)
return
else:
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
if minimum_memory_required is None:
minimum_memory_required = extra_mem
else:
minimum_memory_required = max(
inference_memory, minimum_memory_required + extra_reserved_memory()
)
models = set(models)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
loaded = None
try:
loaded_model_index = current_loaded_models.index(loaded_model)
except:
loaded_model_index = None
if loaded_model_index is not None:
loaded = current_loaded_models[loaded_model_index]
if loaded.should_reload_model(
force_patch_weights=force_patch_weights
): # TODO: cleanup this model reload logic
current_loaded_models.pop(loaded_model_index).model_unload(
unpatch_weights=True
)
loaded = None
else:
loaded.currently_used = True
models_already_loaded.append(loaded)
if loaded is None:
if hasattr(x, "model"):
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(
extra_mem + offloaded_memory(models_already_loaded, d),
d,
models_already_loaded,
)
free_mem = get_free_memory(d)
if free_mem < minimum_memory_required:
logging.info(
"Unloading models for lowram load."
) # TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
models_to_load = free_memory(minimum_memory_required, d)
logging.info("{} models unloaded.".format(len(models_to_load)))
else:
use_more_memory(
free_mem - minimum_memory_required, models_already_loaded, d
)
if len(models_to_load) == 0:
return
logging.info(
f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}"
)
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(
loaded_model.model, unload_weights_only=True, force_unload=False
) # unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_already_loaded:
total_memory_required[loaded_model.device] = total_memory_required.get(
loaded_model.device, 0
) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(
loaded_model.model, unload_weights_only=False, force_unload=False
) # unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(
total_memory_required[device] * 1.1 + extra_mem,
device,
models_already_loaded,
)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if (
lowvram_available
and (
vram_set_state == VRAMState.LOW_VRAM
or vram_set_state == VRAMState.NORMAL_VRAM
)
and not force_full_load
):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = max(
64 * (1024 * 1024),
(current_free_mem - minimum_memory_required),
min(
current_free_mem * 0.4,
current_free_mem - minimum_inference_memory(),
),
)
if (
model_size <= lowvram_model_memory
): # only switch to lowvram if really necessary
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
loaded_model.model_load_flux(
lowvram_model_memory, force_patch_weights=force_patch_weights
)
current_loaded_models.insert(0, loaded_model)
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_mem = get_free_memory(d)
if free_mem > minimum_memory_required:
use_more_memory(
free_mem - minimum_memory_required, models_already_loaded, d
)
return
def load_model_gpu(model: torch.nn.Module, flux_enabled:bool = False) -> None:
"""#### Load a model on the GPU
#### Args:
- `model` (torch.nn.Module): The model
- `flux_enable` (bool, optional): Whether flux is enabled. Defaults to False.
"""
return load_models_gpu([model], flux_enabled=flux_enabled)
def cleanup_models(keep_clone_weights_loaded:bool = False):
"""#### Cleanup the models
#### Args:
- `keep_clone_weights_loaded` (bool, optional): Whether to keep the clone weights loaded. Defaults to False.
"""
to_delete = []
for i in range(len(current_loaded_models)):
if sys.getrefcount(current_loaded_models[i].model) <= 2:
if not keep_clone_weights_loaded:
to_delete = [i] + to_delete
elif (
sys.getrefcount(current_loaded_models[i].real_model) <= 3
): # references from .real_model + the .model
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
def dtype_size(dtype: torch.dtype) -> int:
"""#### Get the size of a dtype
#### Args:
- `dtype` (torch.dtype): The dtype
#### Returns:
- `int`: The size of the dtype
"""
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
elif dtype == torch.float32:
dtype_size = 4
else:
try:
dtype_size = dtype.itemsize
except: # Old pytorch doesn't have .itemsize
pass
return dtype_size
def unet_offload_device() -> torch.device:
"""#### Get the offload device for UNet
#### Returns:
- `torch.device`: The offload device
"""
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype) -> torch.device:
"""#### Get the initial load device for UNet
#### Args:
- `parameters` (int): The parameters
- `dtype` (torch.dtype): The dtype
#### Returns:
- `torch.device`: The initial load device
"""
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def unet_dtype(
device: torch.dtype = None,
model_params: int = 0,
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],
) -> torch.dtype:
"""#### Get the dtype for UNet
#### Args:
- `device` (torch.dtype, optional): The device. Defaults to None.
- `model_params` (int, optional): The model parameters. Defaults to 0.
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].
#### Returns:
- `torch.dtype`: The dtype
"""
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes:
return torch.float16
if should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
def unet_manual_cast(
weight_dtype: torch.dtype,
inference_device: torch.device,
supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32],
) -> torch.dtype:
"""#### Manual cast for UNet
#### Args:
- `weight_dtype` (torch.dtype): The dtype of the weights
- `inference_device` (torch.device): The device used for inference
- `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32].
#### Returns:
- `torch.dtype`: The dtype
"""
if weight_dtype == torch.float32:
return None
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
bf16_supported = should_use_bf16(inference_device)
if bf16_supported and weight_dtype == torch.bfloat16:
return None
if fp16_supported and torch.float16 in supported_dtypes:
return torch.float16
elif bf16_supported and torch.bfloat16 in supported_dtypes:
return torch.bfloat16
else:
return torch.float32
def text_encoder_offload_device() -> torch.device:
"""#### Get the offload device for the text encoder
#### Returns:
- `torch.device`: The offload device
"""
return torch.device("cpu")
def text_encoder_device() -> torch.device:
"""#### Get the device for the text encoder
#### Returns:
- `torch.device`: The device
"""
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def text_encoder_initial_device(load_device: torch.device, offload_device: torch.device, model_size: int = 0) -> torch.device:
"""#### Get the initial device for the text encoder
#### Args:
- `load_device` (torch.device): The load device
- `offload_device` (torch.device): The offload device
- `model_size` (int, optional): The model size. Defaults to 0.
#### Returns:
- `torch.device`: The initial device
"""
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
return offload_device
if is_device_mps(load_device):
return offload_device
mem_l = get_free_memory(load_device)
mem_o = get_free_memory(offload_device)
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
return load_device
else:
return offload_device
def text_encoder_dtype(device: torch.device = None) -> torch.dtype:
"""#### Get the dtype for the text encoder
#### Args:
- `device` (torch.device, optional): The device used by the text encoder. Defaults to None.
Returns:
torch.dtype: The dtype
"""
if is_device_cpu(device):
return torch.float16
return torch.float16
def intermediate_device() -> torch.device:
"""#### Get the intermediate device
#### Returns:
- `torch.device`: The intermediate device
"""
return torch.device("cpu")
def vae_device() -> torch.device:
"""#### Get the VAE device
#### Returns:
- `torch.device`: The VAE device
"""
return get_torch_device()
def vae_offload_device() -> torch.device:
"""#### Get the offload device for VAE
#### Returns:
- `torch.device`: The offload device
"""
return torch.device("cpu")
def vae_dtype():
"""#### Get the dtype for VAE
#### Returns:
- `torch.dtype`: The dtype
"""
global VAE_DTYPE
return VAE_DTYPE
def get_autocast_device(dev: torch.device) -> str:
"""#### Get the autocast device
#### Args:
- `dev` (torch.device): The device
#### Returns:
- `str`: The autocast device type
"""
if hasattr(dev, "type"):
return dev.type
return "cuda"
def supports_dtype(device: torch.device, dtype: torch.dtype) -> bool:
"""#### Check if the device supports the dtype
#### Args:
- `device` (torch.device): The device to check
- `dtype` (torch.dtype): The dtype to check support
#### Returns:
- `bool`: Whether the dtype is supported by the device
"""
if dtype == torch.float32:
return True
if is_device_cpu(device):
return False
if dtype == torch.float16:
return True
if dtype == torch.bfloat16:
return True
return False
def device_supports_non_blocking(device: torch.device) -> bool:
"""#### Check if the device supports non-blocking
#### Args:
- `device` (torch.device): The device to check
#### Returns:
- `bool`: Whether the device supports non-blocking
"""
if is_device_mps(device):
return False # pytorch bug? mps doesn't support non blocking
return True
def supports_cast(device: torch.device, dtype: torch.dtype): # TODO
"""#### Check if the device supports casting
#### Args:
- `device`: The device
- `dtype`: The dtype
#### Returns:
- `bool`: Whether the device supports casting
"""
if dtype == torch.float32:
return True
if dtype == torch.float16:
return True
if directml_enabled:
return False
if dtype == torch.bfloat16:
return True
if is_device_mps(device):
return False
if dtype == torch.float8_e4m3fn:
return True
if dtype == torch.float8_e5m2:
return True
return False
def cast_to_device(tensor: torch.Tensor, device: torch.device, dtype: torch.dtype, copy: bool = False) -> torch.Tensor:
"""#### Cast a tensor to a device
#### Args:
- `tensor` (torch.Tensor): The tensor to cast
- `device` (torch.device): The device to cast the tensor to
- `dtype` (torch.dtype): The dtype precision to cast to
- `copy` (bool, optional): Whether to copy the tensor. Defaults to False.
#### Returns:
- `torch.Tensor`: The tensor cast to the device
"""
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
device_supports_cast = True
elif tensor.dtype == torch.bfloat16:
if hasattr(device, "type") and device.type.startswith("cuda"):
device_supports_cast = True
elif is_intel_xpu():
device_supports_cast = True
non_blocking = device_supports_non_blocking(device)
if device_supports_cast:
if copy:
if tensor.device == device:
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(
dtype, non_blocking=non_blocking
)
else:
return tensor.to(device, non_blocking=non_blocking).to(
dtype, non_blocking=non_blocking
)
else:
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
def pick_weight_dtype(dtype: torch.dtype, fallback_dtype: torch.dtype, device: torch.device) -> torch.dtype:
"""#### Pick the weight dtype
#### Args:
- `dtype`: The dtype
- `fallback_dtype`: The fallback dtype
- `device`: The device
#### Returns:
- `torch.dtype`: The weight dtype
"""
if dtype is None:
dtype = fallback_dtype
elif dtype_size(dtype) > dtype_size(fallback_dtype):
dtype = fallback_dtype
if not supports_cast(device, dtype):
dtype = fallback_dtype
return dtype
def xformers_enabled() -> bool:
"""#### Check if xformers is enabled
#### Returns:
- `bool`: Whether xformers is enabled
"""
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if is_intel_xpu():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae() -> bool:
"""#### Check if xformers is enabled for VAE
#### Returns:
- `bool`: Whether xformers is enabled for VAE
"""
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled() -> bool:
"""#### Check if PyTorch attention is enabled
#### Returns:
- `bool`: Whether PyTorch attention is enabled
"""
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention() -> bool:
"""#### Check if PyTorch flash attention is enabled and supported.
#### Returns:
- `bool`: True if PyTorch flash attention is enabled and supported, False otherwise.
"""
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
if is_nvidia(): # pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev: torch.device = None, torch_free_too: bool = False) -> Union[int, Tuple[int, int]]:
"""#### Get the free memory available on the device.
#### Args:
- `dev` (torch.device, optional): The device to check memory for. Defaults to None.
- `torch_free_too` (bool, optional): Whether to return both total and torch free memory. Defaults to False.
#### Returns:
- `int` or `Tuple[int, int]`: The free memory available. If `torch_free_too` is True, returns a tuple of total and torch free memory.
"""
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024
mem_free_torch = mem_free_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_torch = mem_reserved - mem_active
mem_free_xpu = (
torch.xpu.get_device_properties(dev).total_memory - mem_reserved
)
mem_free_total = mem_free_xpu + mem_free_torch
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats["active_bytes.all.current"]
mem_reserved = stats["reserved_bytes.all.current"]
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def cpu_mode() -> bool:
"""#### Check if the current mode is CPU.
#### Returns:
- `bool`: True if the current mode is CPU, False otherwise.
"""
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode() -> bool:
"""#### Check if the current mode is MPS.
#### Returns:
- `bool`: True if the current mode is MPS, False otherwise.
"""
global cpu_state
return cpu_state == CPUState.MPS
def is_device_type(device: torch.device, type: str) -> bool:
"""#### Check if the device is of a specific type.
#### Args:
- `device` (torch.device): The device to check.
- `type` (str): The type to check for.
#### Returns:
- `bool`: True if the device is of the specified type, False otherwise.
"""
if hasattr(device, "type"):
if device.type == type:
return True
return False
def is_device_cpu(device: torch.device) -> bool:
"""#### Check if the device is a CPU.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is a CPU, False otherwise.
"""
return is_device_type(device, "cpu")
def is_device_mps(device: torch.device) -> bool:
"""#### Check if the device is an MPS.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is an MPS, False otherwise.
"""
return is_device_type(device, "mps")
def is_device_cuda(device: torch.device) -> bool:
"""#### Check if the device is a CUDA device.
#### Args:
- `device` (torch.device): The device to check.
#### Returns:
- `bool`: True if the device is a CUDA device, False otherwise.
"""
return is_device_type(device, "cuda")
def should_use_fp16(
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False
) -> bool:
"""#### Determine if FP16 should be used.
#### Args:
- `device` (torch.device, optional): The device to check. Defaults to None.
- `model_params` (int, optional): The number of model parameters. Defaults to 0.
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.
#### Returns:
- `bool`: True if FP16 should be used, False otherwise.
"""
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None:
if is_device_mps(device):
return True
if FORCE_FP32:
return False
if directml_enabled:
return False
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
return True
if torch.version.hip:
return True
if torch.cuda.is_available():
props = torch.cuda.get_device_properties("cuda")
else:
return False
if props.major >= 8:
return True
if props.major < 6:
return False
fp16_works = False
nvidia_10_series = [
"1080",
"1070",
"titan x",
"p3000",
"p3200",
"p4000",
"p4200",
"p5000",
"p5200",
"p6000",
"1060",
"1050",
"p40",
"p100",
"p6",
"p4",
]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works or manual_cast:
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
nvidia_16_series = [
"1660",
"1650",
"1630",
"T500",
"T550",
"T600",
"MX550",
"MX450",
"CMP 30HX",
"T2000",
"T1000",
"T1200",
]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def should_use_bf16(
device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False
) -> bool:
"""#### Determine if BF16 should be used.
#### Args:
- `device` (torch.device, optional): The device to check. Defaults to None.
- `model_params` (int, optional): The number of model parameters. Defaults to 0.
- `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True.
- `manual_cast` (bool, optional): Whether to manually cast. Defaults to False.
#### Returns:
- `bool`: True if BF16 should be used, False otherwise.
"""
if device is not None:
if is_device_cpu(device):
return False
if device is not None:
if is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False
if is_intel_xpu():
return True
if device is None:
device = torch.device("cuda")
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory()
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
return False
def soft_empty_cache(force: bool = False) -> None:
"""#### Softly empty the cache.
#### Args:
- `force` (bool, optional): Whether to force emptying the cache. Defaults to False.
"""
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif is_intel_xpu():
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if (
force or is_nvidia()
): # This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models() -> None:
"""#### Unload all models."""
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight: torch.Tensor, model: torch.nn.Module, key: str) -> torch.Tensor:
"""#### Resolve low VRAM weight.
#### Args:
- `weight` (torch.Tensor): The weight tensor.
- `model` (torch.nn.Module): The model.
- `key` (str): The key.
#### Returns:
- `torch.Tensor`: The resolved weight tensor.
"""
return weight |