LightDiffusion-Next / modules /Attention /AttentionMethods.py
Aatricks's picture
Upload folder using huggingface_hub
d9a2e19 verified
try :
import xformers
except ImportError:
pass
import torch
BROKEN_XFORMERS = False
try:
x_vers = xformers.__version__
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
except:
pass
def attention_xformers(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False
) -> torch.Tensor:
"""#### Make an attention call using xformers. Fastest attention implementation.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`.
- `heads` (int): The number of heads, must be a divisor of the hidden dimension.
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
if not flux:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
else:
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
disabled_xformers = False
if BROKEN_XFORMERS:
if b * heads > 65535:
disabled_xformers = True
if not disabled_xformers:
if torch.jit.is_tracing() or torch.jit.is_scripting():
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.reshape(b, -1, heads, dim_head),
(q, k, v),
)
if mask is not None:
pad = 8 - q.shape[1] % 8
mask_out = torch.empty(
[q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device
)
mask_out[:, :, : mask.shape[-1]] = mask
mask = mask_out[:, :, : mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
if skip_reshape:
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
else:
out = out.reshape(b, -1, heads * dim_head)
return out
def attention_pytorch(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False
) -> torch.Tensor:
"""#### Make an attention call using PyTorch.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q.
- `heads` (int): The number of heads, must be a divisor of the hidden dimension.
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
if not flux:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
)
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
return out
else:
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
)
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
return out
def xformers_attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor
) -> torch.Tensor:
"""#### Compute attention using xformers.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`.
Returns:
- `torch.Tensor`: The output tensor.
"""
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = out.transpose(1, 2).reshape(B, C, H, W)
return out
def pytorch_attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor
) -> torch.Tensor:
"""#### Compute attention using PyTorch.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
)
out = out.transpose(2, 3).reshape(B, C, H, W)
return out