Spaces:
Running
on
Zero
Running
on
Zero
try : | |
import xformers | |
except ImportError: | |
pass | |
import torch | |
BROKEN_XFORMERS = False | |
try: | |
x_vers = xformers.__version__ | |
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error) | |
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20") | |
except: | |
pass | |
def attention_xformers( | |
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False | |
) -> torch.Tensor: | |
"""#### Make an attention call using xformers. Fastest attention implementation. | |
#### Args: | |
- `q` (torch.Tensor): The query tensor. | |
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`. | |
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`. | |
- `heads` (int): The number of heads, must be a divisor of the hidden dimension. | |
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
if not flux: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(b, -1, heads, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b * heads, -1, dim_head) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, heads, -1, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, -1, heads * dim_head) | |
) | |
return out | |
else: | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
disabled_xformers = False | |
if BROKEN_XFORMERS: | |
if b * heads > 65535: | |
disabled_xformers = True | |
if not disabled_xformers: | |
if torch.jit.is_tracing() or torch.jit.is_scripting(): | |
disabled_xformers = True | |
if disabled_xformers: | |
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape) | |
if skip_reshape: | |
q, k, v = map( | |
lambda t: t.reshape(b * heads, -1, dim_head), | |
(q, k, v), | |
) | |
else: | |
q, k, v = map( | |
lambda t: t.reshape(b, -1, heads, dim_head), | |
(q, k, v), | |
) | |
if mask is not None: | |
pad = 8 - q.shape[1] % 8 | |
mask_out = torch.empty( | |
[q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device | |
) | |
mask_out[:, :, : mask.shape[-1]] = mask | |
mask = mask_out[:, :, : mask.shape[-1]] | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) | |
if skip_reshape: | |
out = ( | |
out.unsqueeze(0) | |
.reshape(b, heads, -1, dim_head) | |
.permute(0, 2, 1, 3) | |
.reshape(b, -1, heads * dim_head) | |
) | |
else: | |
out = out.reshape(b, -1, heads * dim_head) | |
return out | |
def attention_pytorch( | |
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False | |
) -> torch.Tensor: | |
"""#### Make an attention call using PyTorch. | |
#### Args: | |
- `q` (torch.Tensor): The query tensor. | |
- `k` (torch.Tensor): The key tensor, must have the same shape as `q. | |
- `v` (torch.Tensor): The value tensor, must have the same shape as `q. | |
- `heads` (int): The number of heads, must be a divisor of the hidden dimension. | |
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
if not flux: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
q, k, v = map( | |
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), | |
(q, k, v), | |
) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False | |
) | |
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head) | |
return out | |
else: | |
if skip_reshape: | |
b, _, _, dim_head = q.shape | |
else: | |
b, _, dim_head = q.shape | |
dim_head //= heads | |
q, k, v = map( | |
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), | |
(q, k, v), | |
) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False | |
) | |
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head) | |
return out | |
def xformers_attention( | |
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor | |
) -> torch.Tensor: | |
"""#### Compute attention using xformers. | |
#### Args: | |
- `q` (torch.Tensor): The query tensor. | |
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`. | |
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`. | |
Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
B, C, H, W = q.shape | |
q, k, v = map( | |
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) | |
out = out.transpose(1, 2).reshape(B, C, H, W) | |
return out | |
def pytorch_attention( | |
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor | |
) -> torch.Tensor: | |
"""#### Compute attention using PyTorch. | |
#### Args: | |
- `q` (torch.Tensor): The query tensor. | |
- `k` (torch.Tensor): The key tensor, must have the same shape as `q. | |
- `v` (torch.Tensor): The value tensor, must have the same shape as `q. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
B, C, H, W = q.shape | |
q, k, v = map( | |
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), | |
(q, k, v), | |
) | |
out = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False | |
) | |
out = out.transpose(2, 3).reshape(B, C, H, W) | |
return out | |