Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,519 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
try :
import xformers
except ImportError:
pass
import torch
BROKEN_XFORMERS = False
try:
x_vers = xformers.__version__
# XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
except:
pass
def attention_xformers(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False
) -> torch.Tensor:
"""#### Make an attention call using xformers. Fastest attention implementation.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`.
- `heads` (int): The number of heads, must be a divisor of the hidden dimension.
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
if not flux:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out
else:
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
disabled_xformers = False
if BROKEN_XFORMERS:
if b * heads > 65535:
disabled_xformers = True
if not disabled_xformers:
if torch.jit.is_tracing() or torch.jit.is_scripting():
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.reshape(b, -1, heads, dim_head),
(q, k, v),
)
if mask is not None:
pad = 8 - q.shape[1] % 8
mask_out = torch.empty(
[q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device
)
mask_out[:, :, : mask.shape[-1]] = mask
mask = mask_out[:, :, : mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
if skip_reshape:
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
else:
out = out.reshape(b, -1, heads * dim_head)
return out
def attention_pytorch(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False
) -> torch.Tensor:
"""#### Make an attention call using PyTorch.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q.
- `heads` (int): The number of heads, must be a divisor of the hidden dimension.
- `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
if not flux:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
)
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
return out
else:
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
)
out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
return out
def xformers_attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor
) -> torch.Tensor:
"""#### Compute attention using xformers.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q`.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q`.
Returns:
- `torch.Tensor`: The output tensor.
"""
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = out.transpose(1, 2).reshape(B, C, H, W)
return out
def pytorch_attention(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor
) -> torch.Tensor:
"""#### Compute attention using PyTorch.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor, must have the same shape as `q.
- `v` (torch.Tensor): The value tensor, must have the same shape as `q.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
)
out = out.transpose(2, 3).reshape(B, C, H, W)
return out
|