File size: 6,519 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
try :
    import xformers
except ImportError:
    pass
import torch

BROKEN_XFORMERS = False
try:
    x_vers = xformers.__version__
    # XFormers bug confirmed on all versions from 0.0.21 to 0.0.26 (q with bs bigger than 65535 gives CUDA error)
    BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
except:
    pass


def attention_xformers(

    q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False

) -> torch.Tensor:
    """#### Make an attention call using xformers. Fastest attention implementation.



    #### Args:

        - `q` (torch.Tensor): The query tensor.

        - `k` (torch.Tensor): The key tensor, must have the same shape as `q`.

        - `v` (torch.Tensor): The value tensor, must have the same shape as `q`.

        - `heads` (int): The number of heads, must be a divisor of the hidden dimension.

        - `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.



    #### Returns:

        - `torch.Tensor`: The output tensor.

    """
    if not flux:
        b, _, dim_head = q.shape
        dim_head //= heads

        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, -1, heads, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * heads, -1, dim_head)
            .contiguous(),
            (q, k, v),
        )

        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)

        out = (
            out.unsqueeze(0)
            .reshape(b, heads, -1, dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, -1, heads * dim_head)
        )
        return out
    else:
        if skip_reshape:
            b, _, _, dim_head = q.shape
        else:
            b, _, dim_head = q.shape
            dim_head //= heads

        disabled_xformers = False

        if BROKEN_XFORMERS:
            if b * heads > 65535:
                disabled_xformers = True

        if not disabled_xformers:
            if torch.jit.is_tracing() or torch.jit.is_scripting():
                disabled_xformers = True

        if disabled_xformers:
            return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape)

        if skip_reshape:
            q, k, v = map(
                lambda t: t.reshape(b * heads, -1, dim_head),
                (q, k, v),
            )
        else:
            q, k, v = map(
                lambda t: t.reshape(b, -1, heads, dim_head),
                (q, k, v),
            )

        if mask is not None:
            pad = 8 - q.shape[1] % 8
            mask_out = torch.empty(
                [q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device
            )
            mask_out[:, :, : mask.shape[-1]] = mask
            mask = mask_out[:, :, : mask.shape[-1]]

        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)

        if skip_reshape:
            out = (
                out.unsqueeze(0)
                .reshape(b, heads, -1, dim_head)
                .permute(0, 2, 1, 3)
                .reshape(b, -1, heads * dim_head)
            )
        else:
            out = out.reshape(b, -1, heads * dim_head)

        return out


def attention_pytorch(

    q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, heads: int, mask=None, skip_reshape=False, flux=False

) -> torch.Tensor:
    """#### Make an attention call using PyTorch.



    #### Args:

        - `q` (torch.Tensor): The query tensor.

        - `k` (torch.Tensor): The key tensor, must have the same shape as `q.

        - `v` (torch.Tensor): The value tensor, must have the same shape as `q.

        - `heads` (int): The number of heads, must be a divisor of the hidden dimension.

        - `mask` (torch.Tensor, optional): The mask tensor. Defaults to `None`.



    #### Returns:

        - `torch.Tensor`: The output tensor.

    """
    if not flux:
        b, _, dim_head = q.shape
        dim_head //= heads
        q, k, v = map(
            lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
            (q, k, v),
        )

        out = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
        )
        out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
        return out
    else:
        if skip_reshape:
            b, _, _, dim_head = q.shape
        else:
            b, _, dim_head = q.shape
            dim_head //= heads
            q, k, v = map(
                lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
                (q, k, v),
            )

        out = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
        )
        out = out.transpose(1, 2).reshape(b, -1, heads * dim_head)
        return out

def xformers_attention(

    q: torch.Tensor, k: torch.Tensor, v: torch.Tensor

) -> torch.Tensor:
    """#### Compute attention using xformers.



    #### Args:

        - `q` (torch.Tensor): The query tensor.

        - `k` (torch.Tensor): The key tensor, must have the same shape as `q`.

        - `v` (torch.Tensor): The value tensor, must have the same shape as `q`.



    Returns:

        - `torch.Tensor`: The output tensor.

    """
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
        (q, k, v),
    )
    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
    out = out.transpose(1, 2).reshape(B, C, H, W)
    return out


def pytorch_attention(

    q: torch.Tensor, k: torch.Tensor, v: torch.Tensor

) -> torch.Tensor:
    """#### Compute attention using PyTorch.



    #### Args:

        - `q` (torch.Tensor): The query tensor.

        - `k` (torch.Tensor): The key tensor, must have the same shape as `q.

        - `v` (torch.Tensor): The value tensor, must have the same shape as `q.



    #### Returns:

        - `torch.Tensor`: The output tensor.

    """
    B, C, H, W = q.shape
    q, k, v = map(
        lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
        (q, k, v),
    )
    out = torch.nn.functional.scaled_dot_product_attention(
        q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
    )
    out = out.transpose(2, 3).reshape(B, C, H, W)
    return out