Spaces:
Running
on
Zero
Running
on
Zero
# Original code can be found on: https://github.com/black-forest-labs/flux | |
from dataclasses import dataclass | |
from einops import rearrange, repeat | |
import torch | |
import torch.nn as nn | |
from modules.Attention import Attention | |
from modules.Device import Device | |
from modules.Model import ModelBase | |
from modules.Utilities import Latent | |
from modules.cond import cast, cond | |
from modules.sample import sampling, sampling_util | |
# Define the attention mechanism | |
def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, pe: torch.Tensor) -> torch.Tensor: | |
"""#### Compute the attention mechanism. | |
#### Args: | |
- `q` (Tensor): The query tensor. | |
- `k` (Tensor): The key tensor. | |
- `v` (Tensor): The value tensor. | |
- `pe` (Tensor): The positional encoding tensor. | |
#### Returns: | |
- `Tensor`: The attention tensor. | |
""" | |
q, k = apply_rope(q, k, pe) | |
heads = q.shape[1] | |
x = Attention.optimized_attention(q, k, v, heads, skip_reshape=True, flux=True) | |
return x | |
# Define the rotary positional encoding (RoPE) | |
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: | |
"""#### Compute the rotary positional encoding. | |
#### Args: | |
- `pos` (Tensor): The position tensor. | |
- `dim` (int): The dimension of the tensor. | |
- `theta` (int): The theta value for scaling. | |
#### Returns: | |
- `Tensor`: The rotary positional encoding tensor. | |
""" | |
assert dim % 2 == 0 | |
if Device.is_device_mps(pos.device) or Device.is_intel_xpu(): | |
device = torch.device("cpu") | |
else: | |
device = pos.device | |
scale = torch.linspace( | |
0, (dim - 2) / dim, steps=dim // 2, dtype=torch.float64, device=device | |
) | |
omega = 1.0 / (theta**scale) | |
out = torch.einsum( | |
"...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega | |
) | |
out = torch.stack( | |
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1 | |
) | |
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
return out.to(dtype=torch.float32, device=pos.device) | |
# Apply the rotary positional encoding to the query and key tensors | |
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> tuple: | |
"""#### Apply the rotary positional encoding to the query and key tensors. | |
#### Args: | |
- `xq` (Tensor): The query tensor. | |
- `xk` (Tensor): The key tensor. | |
- `freqs_cis` (Tensor): The frequency tensor. | |
#### Returns: | |
- `tuple`: The modified query and key tensors. | |
""" | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
# Define the embedding class | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list): | |
"""#### Initialize the EmbedND class. | |
#### Args: | |
- `dim` (int): The dimension of the tensor. | |
- `theta` (int): The theta value for scaling. | |
- `axes_dim` (list): The list of axis dimensions. | |
""" | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: torch.Tensor) -> torch.Tensor: | |
"""#### Forward pass for the EmbedND class. | |
#### Args: | |
- `ids` (Tensor): The input tensor. | |
#### Returns: | |
- `Tensor`: The embedded tensor. | |
""" | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
# Define the MLP embedder class | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): | |
"""#### Initialize the MLPEmbedder class. | |
#### Args: | |
- `in_dim` (int): The input dimension. | |
- `hidden_dim` (int): The hidden dimension. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.in_layer = operations.Linear( | |
in_dim, hidden_dim, bias=True, dtype=dtype, device=device | |
) | |
self.silu = nn.SiLU() | |
self.out_layer = operations.Linear( | |
hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""#### Forward pass for the MLPEmbedder class. | |
#### Args: | |
- `x` (Tensor): The input tensor. | |
#### Returns: | |
- `Tensor`: The output tensor. | |
""" | |
return self.out_layer(self.silu(self.in_layer(x))) | |
# Define the RMS normalization class | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, dtype=None, device=None, operations=None): | |
"""#### Initialize the RMSNorm class. | |
#### Args: | |
- `dim` (int): The dimension of the tensor. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""#### Forward pass for the RMSNorm class. | |
#### Args: | |
- `x` (Tensor): The input tensor. | |
#### Returns: | |
- `Tensor`: The normalized tensor. | |
""" | |
return rms_norm(x, self.scale, 1e-6) | |
# Define the query-key normalization class | |
class QKNorm(nn.Module): | |
def __init__(self, dim: int, dtype=None, device=None, operations=None): | |
"""#### Initialize the QKNorm class. | |
#### Args: | |
- `dim` (int): The dimension of the tensor. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) | |
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) | |
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> tuple: | |
"""#### Forward pass for the QKNorm class. | |
#### Args: | |
- `q` (Tensor): The query tensor. | |
- `k` (Tensor): The key tensor. | |
- `v` (Tensor): The value tensor. | |
#### Returns: | |
- `tuple`: The normalized query and key tensors. | |
""" | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
# Define the self-attention class | |
class SelfAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): | |
"""#### Initialize the SelfAttention class. | |
#### Args: | |
- `dim` (int): The dimension of the tensor. | |
- `num_heads` (int, optional): The number of attention heads. Defaults to 8. | |
- `qkv_bias` (bool, optional): Whether to use bias in QKV projection. Defaults to False. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) | |
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) | |
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) | |
# Define the modulation output dataclass | |
class ModulationOut: | |
shift: torch.Tensor | |
scale: torch.Tensor | |
gate: torch.Tensor | |
# Define the modulation class | |
class Modulation(nn.Module): | |
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): | |
"""#### Initialize the Modulation class. | |
#### Args: | |
- `dim` (int): The dimension of the tensor. | |
- `double` (bool): Whether to use double modulation. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) | |
def forward(self, vec: torch.Tensor) -> tuple: | |
"""#### Forward pass for the Modulation class. | |
#### Args: | |
- `vec` (Tensor): The input tensor. | |
#### Returns: | |
- `tuple`: The modulation output. | |
""" | |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
return (ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None) | |
# Define the double stream block class | |
class DoubleStreamBlock(nn.Module): | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None): | |
"""#### Initialize the DoubleStreamBlock class. | |
#### Args: | |
- `hidden_size` (int): The hidden size. | |
- `num_heads` (int): The number of attention heads. | |
- `mlp_ratio` (float): The MLP ratio. | |
- `qkv_bias` (bool, optional): Whether to use bias in QKV projection. Defaults to False. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) | |
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) | |
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.img_mlp = nn.Sequential( | |
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), | |
nn.GELU(approximate="tanh"), | |
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) | |
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) | |
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.txt_mlp = nn.Sequential( | |
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), | |
nn.GELU(approximate="tanh"), | |
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
def forward(self, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor) -> tuple: | |
"""#### Forward pass for the DoubleStreamBlock class. | |
#### Args: | |
- `img` (Tensor): The image tensor. | |
- `txt` (Tensor): The text tensor. | |
- `vec` (Tensor): The vector tensor. | |
- `pe` (Tensor): The positional encoding tensor. | |
#### Returns: | |
- `tuple`: The modified image and text tensors. | |
""" | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
attn = attention( | |
torch.cat((txt_q, img_q), dim=2), | |
torch.cat((txt_k, img_k), dim=2), | |
torch.cat((txt_v, img_v), dim=2), | |
pe=pe, | |
) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img bloks | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
# calculate the txt bloks | |
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
if txt.dtype == torch.float16: | |
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) | |
return img, txt | |
# Define the single stream block class | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float = None, dtype=None, device=None, operations=None): | |
"""#### Initialize the SingleStreamBlock class. | |
#### Args: | |
- `hidden_size` (int): The hidden size. | |
- `num_heads` (int): The number of attention heads. | |
- `mlp_ratio` (float, optional): The MLP ratio. Defaults to 4.0. | |
- `qk_scale` (float, optional): The QK scale. Defaults to None. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) | |
# proj and mlp_out | |
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) | |
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) | |
self.hidden_size = hidden_size | |
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) | |
def forward(self, x: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor) -> torch.Tensor: | |
"""#### Forward pass for the SingleStreamBlock class. | |
#### Args: | |
- `x` (Tensor): The input tensor. | |
- `vec` (Tensor): The vector tensor. | |
- `pe` (Tensor): The positional encoding tensor. | |
#### Returns: | |
- `Tensor`: The modified tensor. | |
""" | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
qkv, mlp = torch.split( | |
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1 | |
) | |
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute( | |
2, 0, 3, 1, 4 | |
) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
x += mod.gate * output | |
if x.dtype == torch.float16: | |
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) | |
return x | |
class LastLayer(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
patch_size: int, | |
out_channels: int, | |
dtype=None, | |
device=None, | |
operations=None, | |
): | |
"""#### Initialize the LastLayer class. | |
#### Args: | |
- `hidden_size` (int): The hidden size. | |
- `patch_size` (int): The patch size. | |
- `out_channels` (int): The number of output channels. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
""" | |
super().__init__() | |
self.norm_final = operations.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device | |
) | |
self.linear = operations.Linear( | |
hidden_size, | |
patch_size * patch_size * out_channels, | |
bias=True, | |
dtype=dtype, | |
device=device, | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
operations.Linear( | |
hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device | |
), | |
) | |
def forward(self, x: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: | |
"""#### Forward pass for the LastLayer class. | |
#### Args: | |
- `x` (torch.Tensor): The input tensor. | |
- `vec` (torch.Tensor): The vector tensor. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |
def pad_to_patch_size(img: torch.Tensor, patch_size: tuple = (2, 2), padding_mode: str = "circular") -> torch.Tensor: | |
"""#### Pad the image to the specified patch size. | |
#### Args: | |
- `img` (torch.Tensor): The input image tensor. | |
- `patch_size` (tuple, optional): The patch size. Defaults to (2, 2). | |
- `padding_mode` (str, optional): The padding mode. Defaults to "circular". | |
#### Returns: | |
- `torch.Tensor`: The padded image tensor. | |
""" | |
if ( | |
padding_mode == "circular" | |
and torch.jit.is_tracing() | |
or torch.jit.is_scripting() | |
): | |
padding_mode = "reflect" | |
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0] | |
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1] | |
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode) | |
try: | |
rms_norm_torch = torch.nn.functional.rms_norm | |
except Exception: | |
rms_norm_torch = None | |
def rms_norm(x: torch.Tensor, weight: torch.Tensor, eps: float = 1e-6) -> torch.Tensor: | |
"""#### Apply RMS normalization to the input tensor. | |
#### Args: | |
- `x` (torch.Tensor): The input tensor. | |
- `weight` (torch.Tensor): The weight tensor. | |
- `eps` (float, optional): The epsilon value for numerical stability. Defaults to 1e-6. | |
#### Returns: | |
- `torch.Tensor`: The normalized tensor. | |
""" | |
if rms_norm_torch is not None and not ( | |
torch.jit.is_tracing() or torch.jit.is_scripting() | |
): | |
return rms_norm_torch( | |
x, | |
weight.shape, | |
weight=cast.cast_to(weight, dtype=x.dtype, device=x.device), | |
eps=eps, | |
) | |
else: | |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps) | |
return (x * rrms) * cast.cast_to(weight, dtype=x.dtype, device=x.device) | |
class FluxParams: | |
in_channels: int | |
vec_in_dim: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list | |
theta: int | |
qkv_bias: bool | |
guidance_embed: bool | |
class Flux3(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__( | |
self, | |
image_model=None, | |
final_layer: bool = True, | |
dtype=None, | |
device=None, | |
operations=None, | |
**kwargs, | |
): | |
"""#### Initialize the Flux3 class. | |
#### Args: | |
- `image_model` (optional): The image model. | |
- `final_layer` (bool, optional): Whether to include the final layer. Defaults to True. | |
- `dtype` (optional): The data type. | |
- `device` (optional): The device. | |
- `operations` (optional): The operations module. | |
- `**kwargs`: Additional keyword arguments. | |
""" | |
super().__init__() | |
self.dtype = dtype | |
params = FluxParams(**kwargs) | |
self.params = params | |
self.in_channels = params.in_channels * 2 * 2 | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError( | |
f"Got {params.axes_dim} but expected positional dim {pe_dim}" | |
) | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND( | |
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim | |
) | |
self.img_in = operations.Linear( | |
self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device | |
) | |
self.time_in = MLPEmbedder( | |
in_dim=256, | |
hidden_dim=self.hidden_size, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
self.vector_in = MLPEmbedder( | |
params.vec_in_dim, | |
self.hidden_size, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
self.guidance_in = ( | |
MLPEmbedder( | |
in_dim=256, | |
hidden_dim=self.hidden_size, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
if params.guidance_embed | |
else nn.Identity() | |
) | |
self.txt_in = operations.Linear( | |
params.context_in_dim, self.hidden_size, dtype=dtype, device=device | |
) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
if final_layer: | |
self.final_layer = LastLayer( | |
self.hidden_size, | |
1, | |
self.out_channels, | |
dtype=dtype, | |
device=device, | |
operations=operations, | |
) | |
def forward_orig( | |
self, | |
img: torch.Tensor, | |
img_ids: torch.Tensor, | |
txt: torch.Tensor, | |
txt_ids: torch.Tensor, | |
timesteps: torch.Tensor, | |
y: torch.Tensor, | |
guidance: torch.Tensor = None, | |
control=None, | |
) -> torch.Tensor: | |
"""#### Original forward pass for the Flux3 class. | |
#### Args: | |
- `img` (torch.Tensor): The image tensor. | |
- `img_ids` (torch.Tensor): The image IDs tensor. | |
- `txt` (torch.Tensor): The text tensor. | |
- `txt_ids` (torch.Tensor): The text IDs tensor. | |
- `timesteps` (torch.Tensor): The timesteps tensor. | |
- `y` (torch.Tensor): The vector tensor. | |
- `guidance` (torch.Tensor, optional): The guidance tensor. Defaults to None. | |
- `control` (optional): The control tensor. Defaults to None. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(sampling_util.timestep_embedding_flux(timesteps, 256).to(img.dtype)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError( | |
"Didn't get guidance strength for guidance distilled model." | |
) | |
vec = vec + self.guidance_in( | |
sampling_util.timestep_embedding_flux(guidance, 256).to(img.dtype) | |
) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
for i, block in enumerate(self.double_blocks): | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
if control is not None: # Controlnet | |
control_i = control.get("input") | |
if i < len(control_i): | |
add = control_i[i] | |
if add is not None: | |
img += add | |
img = torch.cat((txt, img), 1) | |
for i, block in enumerate(self.single_blocks): | |
img = block(img, vec=vec, pe=pe) | |
if control is not None: # Controlnet | |
control_o = control.get("output") | |
if i < len(control_o): | |
add = control_o[i] | |
if add is not None: | |
img[:, txt.shape[1] :, ...] += add | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def forward(self, x: torch.Tensor, timestep: torch.Tensor, context: torch.Tensor, y: torch.Tensor, guidance: torch.Tensor, control=None, **kwargs) -> torch.Tensor: | |
"""#### Forward pass for the Flux3 class. | |
#### Args: | |
- `x` (torch.Tensor): The input tensor. | |
- `timestep` (torch.Tensor): The timestep tensor. | |
- `context` (torch.Tensor): The context tensor. | |
- `y` (torch.Tensor): The vector tensor. | |
- `guidance` (torch.Tensor): The guidance tensor. | |
- `control` (optional): The control tensor. Defaults to None. | |
- `**kwargs`: Additional keyword arguments. | |
#### Returns: | |
- `torch.Tensor`: The output tensor. | |
""" | |
bs, c, h, w = x.shape | |
patch_size = 2 | |
x = pad_to_patch_size(x, (patch_size, patch_size)) | |
img = rearrange( | |
x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size | |
) | |
h_len = (h + (patch_size // 2)) // patch_size | |
w_len = (w + (patch_size // 2)) // patch_size | |
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
img_ids[..., 1] = ( | |
img_ids[..., 1] | |
+ torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[ | |
:, None | |
] | |
) | |
img_ids[..., 2] = ( | |
img_ids[..., 2] | |
+ torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[ | |
None, : | |
] | |
) | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) | |
out = self.forward_orig( | |
img, img_ids, context, txt_ids, timestep, y, guidance, control | |
) | |
return rearrange( | |
out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2 | |
)[:, :, :h, :w] | |
class Flux2(ModelBase.BaseModel): | |
def __init__(self, model_config: dict, model_type=sampling.ModelType.FLUX, device=None): | |
"""#### Initialize the Flux2 class. | |
#### Args: | |
- `model_config` (dict): The model configuration. | |
- `model_type` (sampling.ModelType, optional): The model type. Defaults to sampling.ModelType.FLUX. | |
- `device` (optional): The device. | |
""" | |
super().__init__(model_config, model_type, device=device, unet_model=Flux3, flux=True) | |
def encode_adm(self, **kwargs) -> torch.Tensor: | |
"""#### Encode the ADM. | |
#### Args: | |
- `**kwargs`: Additional keyword arguments. | |
#### Returns: | |
- `torch.Tensor`: The encoded ADM tensor. | |
""" | |
return kwargs["pooled_output"] | |
def extra_conds(self, **kwargs) -> dict: | |
"""#### Get extra conditions. | |
#### Args: | |
- `**kwargs`: Additional keyword arguments. | |
#### Returns: | |
- `dict`: The extra conditions. | |
""" | |
out = super().extra_conds(**kwargs) | |
cross_attn = kwargs.get("cross_attn", None) | |
if cross_attn is not None: | |
out["c_crossattn"] = cond.CONDRegular(cross_attn) | |
out["guidance"] = cond.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)])) | |
return out | |
class Flux(ModelBase.BASE): | |
unet_config = { | |
"image_model": "flux", | |
"guidance_embed": True, | |
} | |
sampling_settings = {} | |
unet_extra_config = {} | |
latent_format = Latent.Flux1 | |
memory_usage_factor = 2.8 | |
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] | |
vae_key_prefix = ["vae."] | |
text_encoder_key_prefix = ["text_encoders."] | |
def get_model(self, state_dict: dict, prefix: str = "", device=None) -> Flux2: | |
"""#### Get the model. | |
#### Args: | |
- `state_dict` (dict): The state dictionary. | |
- `prefix` (str, optional): The prefix. Defaults to "". | |
- `device` (optional): The device. | |
#### Returns: | |
- `Flux2`: The Flux2 model. | |
""" | |
out = Flux2(self, device=device) | |
return out | |
models = [Flux] |