Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,324 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
# Original code can be found on: https://github.com/black-forest-labs/flux
from dataclasses import dataclass
from einops import rearrange, repeat
import torch
import torch.nn as nn
from modules.Attention import Attention
from modules.Device import Device
from modules.Model import ModelBase
from modules.Utilities import Latent
from modules.cond import cast, cond
from modules.sample import sampling, sampling_util
# Define the attention mechanism
def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, pe: torch.Tensor) -> torch.Tensor:
"""#### Compute the attention mechanism.
#### Args:
- `q` (Tensor): The query tensor.
- `k` (Tensor): The key tensor.
- `v` (Tensor): The value tensor.
- `pe` (Tensor): The positional encoding tensor.
#### Returns:
- `Tensor`: The attention tensor.
"""
q, k = apply_rope(q, k, pe)
heads = q.shape[1]
x = Attention.optimized_attention(q, k, v, heads, skip_reshape=True, flux=True)
return x
# Define the rotary positional encoding (RoPE)
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
"""#### Compute the rotary positional encoding.
#### Args:
- `pos` (Tensor): The position tensor.
- `dim` (int): The dimension of the tensor.
- `theta` (int): The theta value for scaling.
#### Returns:
- `Tensor`: The rotary positional encoding tensor.
"""
assert dim % 2 == 0
if Device.is_device_mps(pos.device) or Device.is_intel_xpu():
device = torch.device("cpu")
else:
device = pos.device
scale = torch.linspace(
0, (dim - 2) / dim, steps=dim // 2, dtype=torch.float64, device=device
)
omega = 1.0 / (theta**scale)
out = torch.einsum(
"...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega
)
out = torch.stack(
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
# Apply the rotary positional encoding to the query and key tensors
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> tuple:
"""#### Apply the rotary positional encoding to the query and key tensors.
#### Args:
- `xq` (Tensor): The query tensor.
- `xk` (Tensor): The key tensor.
- `freqs_cis` (Tensor): The frequency tensor.
#### Returns:
- `tuple`: The modified query and key tensors.
"""
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
# Define the embedding class
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list):
"""#### Initialize the EmbedND class.
#### Args:
- `dim` (int): The dimension of the tensor.
- `theta` (int): The theta value for scaling.
- `axes_dim` (list): The list of axis dimensions.
"""
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the EmbedND class.
#### Args:
- `ids` (Tensor): The input tensor.
#### Returns:
- `Tensor`: The embedded tensor.
"""
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
# Define the MLP embedder class
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
"""#### Initialize the MLPEmbedder class.
#### Args:
- `in_dim` (int): The input dimension.
- `hidden_dim` (int): The hidden dimension.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.in_layer = operations.Linear(
in_dim, hidden_dim, bias=True, dtype=dtype, device=device
)
self.silu = nn.SiLU()
self.out_layer = operations.Linear(
hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the MLPEmbedder class.
#### Args:
- `x` (Tensor): The input tensor.
#### Returns:
- `Tensor`: The output tensor.
"""
return self.out_layer(self.silu(self.in_layer(x)))
# Define the RMS normalization class
class RMSNorm(nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
"""#### Initialize the RMSNorm class.
#### Args:
- `dim` (int): The dimension of the tensor.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the RMSNorm class.
#### Args:
- `x` (Tensor): The input tensor.
#### Returns:
- `Tensor`: The normalized tensor.
"""
return rms_norm(x, self.scale, 1e-6)
# Define the query-key normalization class
class QKNorm(nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
"""#### Initialize the QKNorm class.
#### Args:
- `dim` (int): The dimension of the tensor.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> tuple:
"""#### Forward pass for the QKNorm class.
#### Args:
- `q` (Tensor): The query tensor.
- `k` (Tensor): The key tensor.
- `v` (Tensor): The value tensor.
#### Returns:
- `tuple`: The normalized query and key tensors.
"""
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
# Define the self-attention class
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
"""#### Initialize the SelfAttention class.
#### Args:
- `dim` (int): The dimension of the tensor.
- `num_heads` (int, optional): The number of attention heads. Defaults to 8.
- `qkv_bias` (bool, optional): Whether to use bias in QKV projection. Defaults to False.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
# Define the modulation output dataclass
@dataclass
class ModulationOut:
shift: torch.Tensor
scale: torch.Tensor
gate: torch.Tensor
# Define the modulation class
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
"""#### Initialize the Modulation class.
#### Args:
- `dim` (int): The dimension of the tensor.
- `double` (bool): Whether to use double modulation.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
def forward(self, vec: torch.Tensor) -> tuple:
"""#### Forward pass for the Modulation class.
#### Args:
- `vec` (Tensor): The input tensor.
#### Returns:
- `tuple`: The modulation output.
"""
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None)
# Define the double stream block class
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
"""#### Initialize the DoubleStreamBlock class.
#### Args:
- `hidden_size` (int): The hidden size.
- `num_heads` (int): The number of attention heads.
- `mlp_ratio` (float): The MLP ratio.
- `qkv_bias` (bool, optional): Whether to use bias in QKV projection. Defaults to False.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor) -> tuple:
"""#### Forward pass for the DoubleStreamBlock class.
#### Args:
- `img` (Tensor): The image tensor.
- `txt` (Tensor): The text tensor.
- `vec` (Tensor): The vector tensor.
- `pe` (Tensor): The positional encoding tensor.
#### Returns:
- `tuple`: The modified image and text tensors.
"""
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(
torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe,
)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
# Define the single stream block class
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float = None, dtype=None, device=None, operations=None):
"""#### Initialize the SingleStreamBlock class.
#### Args:
- `hidden_size` (int): The hidden size.
- `num_heads` (int): The number of attention heads.
- `mlp_ratio` (float, optional): The MLP ratio. Defaults to 4.0.
- `qk_scale` (float, optional): The QK scale. Defaults to None.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: torch.Tensor, vec: torch.Tensor, pe: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the SingleStreamBlock class.
#### Args:
- `x` (Tensor): The input tensor.
- `vec` (Tensor): The vector tensor.
- `pe` (Tensor): The positional encoding tensor.
#### Returns:
- `Tensor`: The modified tensor.
"""
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1
)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(
2, 0, 3, 1, 4
)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += mod.gate * output
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(
self,
hidden_size: int,
patch_size: int,
out_channels: int,
dtype=None,
device=None,
operations=None,
):
"""#### Initialize the LastLayer class.
#### Args:
- `hidden_size` (int): The hidden size.
- `patch_size` (int): The patch size.
- `out_channels` (int): The number of output channels.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
"""
super().__init__()
self.norm_final = operations.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.linear = operations.Linear(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
dtype=dtype,
device=device,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(
hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device
),
)
def forward(self, x: torch.Tensor, vec: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the LastLayer class.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `vec` (torch.Tensor): The vector tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
def pad_to_patch_size(img: torch.Tensor, patch_size: tuple = (2, 2), padding_mode: str = "circular") -> torch.Tensor:
"""#### Pad the image to the specified patch size.
#### Args:
- `img` (torch.Tensor): The input image tensor.
- `patch_size` (tuple, optional): The patch size. Defaults to (2, 2).
- `padding_mode` (str, optional): The padding mode. Defaults to "circular".
#### Returns:
- `torch.Tensor`: The padded image tensor.
"""
if (
padding_mode == "circular"
and torch.jit.is_tracing()
or torch.jit.is_scripting()
):
padding_mode = "reflect"
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode)
try:
rms_norm_torch = torch.nn.functional.rms_norm
except Exception:
rms_norm_torch = None
def rms_norm(x: torch.Tensor, weight: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
"""#### Apply RMS normalization to the input tensor.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `weight` (torch.Tensor): The weight tensor.
- `eps` (float, optional): The epsilon value for numerical stability. Defaults to 1e-6.
#### Returns:
- `torch.Tensor`: The normalized tensor.
"""
if rms_norm_torch is not None and not (
torch.jit.is_tracing() or torch.jit.is_scripting()
):
return rms_norm_torch(
x,
weight.shape,
weight=cast.cast_to(weight, dtype=x.dtype, device=x.device),
eps=eps,
)
else:
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
return (x * rrms) * cast.cast_to(weight, dtype=x.dtype, device=x.device)
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux3(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(
self,
image_model=None,
final_layer: bool = True,
dtype=None,
device=None,
operations=None,
**kwargs,
):
"""#### Initialize the Flux3 class.
#### Args:
- `image_model` (optional): The image model.
- `final_layer` (bool, optional): Whether to include the final layer. Defaults to True.
- `dtype` (optional): The data type.
- `device` (optional): The device.
- `operations` (optional): The operations module.
- `**kwargs`: Additional keyword arguments.
"""
super().__init__()
self.dtype = dtype
params = FluxParams(**kwargs)
self.params = params
self.in_channels = params.in_channels * 2 * 2
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
)
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim
)
self.img_in = operations.Linear(
self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device
)
self.time_in = MLPEmbedder(
in_dim=256,
hidden_dim=self.hidden_size,
dtype=dtype,
device=device,
operations=operations,
)
self.vector_in = MLPEmbedder(
params.vec_in_dim,
self.hidden_size,
dtype=dtype,
device=device,
operations=operations,
)
self.guidance_in = (
MLPEmbedder(
in_dim=256,
hidden_dim=self.hidden_size,
dtype=dtype,
device=device,
operations=operations,
)
if params.guidance_embed
else nn.Identity()
)
self.txt_in = operations.Linear(
params.context_in_dim, self.hidden_size, dtype=dtype, device=device
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(
self.hidden_size,
1,
self.out_channels,
dtype=dtype,
device=device,
operations=operations,
)
def forward_orig(
self,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
timesteps: torch.Tensor,
y: torch.Tensor,
guidance: torch.Tensor = None,
control=None,
) -> torch.Tensor:
"""#### Original forward pass for the Flux3 class.
#### Args:
- `img` (torch.Tensor): The image tensor.
- `img_ids` (torch.Tensor): The image IDs tensor.
- `txt` (torch.Tensor): The text tensor.
- `txt_ids` (torch.Tensor): The text IDs tensor.
- `timesteps` (torch.Tensor): The timesteps tensor.
- `y` (torch.Tensor): The vector tensor.
- `guidance` (torch.Tensor, optional): The guidance tensor. Defaults to None.
- `control` (optional): The control tensor. Defaults to None.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(sampling_util.timestep_embedding_flux(timesteps, 256).to(img.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError(
"Didn't get guidance strength for guidance distilled model."
)
vec = vec + self.guidance_in(
sampling_util.timestep_embedding_flux(guidance, 256).to(img.dtype)
)
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for i, block in enumerate(self.double_blocks):
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x: torch.Tensor, timestep: torch.Tensor, context: torch.Tensor, y: torch.Tensor, guidance: torch.Tensor, control=None, **kwargs) -> torch.Tensor:
"""#### Forward pass for the Flux3 class.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `timestep` (torch.Tensor): The timestep tensor.
- `context` (torch.Tensor): The context tensor.
- `y` (torch.Tensor): The vector tensor.
- `guidance` (torch.Tensor): The guidance tensor.
- `control` (optional): The control tensor. Defaults to None.
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
bs, c, h, w = x.shape
patch_size = 2
x = pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(
x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size
)
h_len = (h + (patch_size // 2)) // patch_size
w_len = (w + (patch_size // 2)) // patch_size
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[..., 1] = (
img_ids[..., 1]
+ torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[
:, None
]
)
img_ids[..., 2] = (
img_ids[..., 2]
+ torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[
None, :
]
)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(
img, img_ids, context, txt_ids, timestep, y, guidance, control
)
return rearrange(
out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2
)[:, :, :h, :w]
class Flux2(ModelBase.BaseModel):
def __init__(self, model_config: dict, model_type=sampling.ModelType.FLUX, device=None):
"""#### Initialize the Flux2 class.
#### Args:
- `model_config` (dict): The model configuration.
- `model_type` (sampling.ModelType, optional): The model type. Defaults to sampling.ModelType.FLUX.
- `device` (optional): The device.
"""
super().__init__(model_config, model_type, device=device, unet_model=Flux3, flux=True)
def encode_adm(self, **kwargs) -> torch.Tensor:
"""#### Encode the ADM.
#### Args:
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `torch.Tensor`: The encoded ADM tensor.
"""
return kwargs["pooled_output"]
def extra_conds(self, **kwargs) -> dict:
"""#### Get extra conditions.
#### Args:
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `dict`: The extra conditions.
"""
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out["c_crossattn"] = cond.CONDRegular(cross_attn)
out["guidance"] = cond.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
return out
class Flux(ModelBase.BASE):
unet_config = {
"image_model": "flux",
"guidance_embed": True,
}
sampling_settings = {}
unet_extra_config = {}
latent_format = Latent.Flux1
memory_usage_factor = 2.8
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict: dict, prefix: str = "", device=None) -> Flux2:
"""#### Get the model.
#### Args:
- `state_dict` (dict): The state dictionary.
- `prefix` (str, optional): The prefix. Defaults to "".
- `device` (optional): The device.
#### Returns:
- `Flux2`: The Flux2 model.
"""
out = Flux2(self, device=device)
return out
models = [Flux] |