Aatricks's picture
increased duration
1329d8c verified
raw
history blame
6.61 kB
import glob
import gradio as gr
import sys
import os
from PIL import Image
import numpy as np
import spaces
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
from modules.user.pipeline import pipeline
import torch
def load_generated_images():
"""Load generated images with given prefix from disk"""
image_files = glob.glob("./_internal/output/**/*.png")
# If there are no image files, return
if not image_files:
return []
# Sort files by modification time in descending order
image_files.sort(key=os.path.getmtime, reverse=True)
# Get most recent timestamp
latest_time = os.path.getmtime(image_files[0])
# Get all images from same batch (within 1 second of most recent)
batch_images = []
for file in image_files:
if abs(os.path.getmtime(file) - latest_time) < 1.0:
try:
img = Image.open(file)
batch_images.append(img)
except:
continue
if not batch_images:
return []
return batch_images
@spaces.GPU(duration=300)
def generate_images(
prompt: str,
width: int = 512,
height: int = 512,
num_images: int = 1,
batch_size: int = 1,
hires_fix: bool = False,
adetailer: bool = False,
enhance_prompt: bool = False,
img2img_enabled: bool = False,
img2img_image: str = None,
stable_fast: bool = False,
reuse_seed: bool = False,
flux_enabled: bool = False,
prio_speed: bool = False,
realistic_model: bool = False,
progress=gr.Progress(),
):
"""Generate images using the LightDiffusion pipeline"""
try:
if img2img_enabled and img2img_image is not None:
# Convert numpy array to PIL Image
if isinstance(img2img_image, np.ndarray):
img_pil = Image.fromarray(img2img_image)
img_pil.save("temp_img2img.png")
prompt = "temp_img2img.png"
# Run pipeline and capture saved images
with torch.inference_mode():
pipeline(
prompt=prompt,
w=width,
h=height,
number=num_images,
batch=batch_size,
hires_fix=hires_fix,
adetailer=adetailer,
enhance_prompt=enhance_prompt,
img2img=img2img_enabled,
stable_fast=stable_fast,
reuse_seed=reuse_seed,
flux_enabled=flux_enabled,
prio_speed=prio_speed,
autohdr=True,
realistic_model=realistic_model,
)
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return load_generated_images()
except Exception:
import traceback
print(traceback.format_exc())
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return [Image.new("RGB", (512, 512), color="black")]
# Create Gradio interface
with gr.Blocks(title="LightDiffusion Web UI") as demo:
gr.Markdown("# LightDiffusion Web UI")
gr.Markdown("Generate AI images using LightDiffusion")
gr.Markdown(
"This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
)
with gr.Row():
with gr.Column():
# Input components
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
width = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Width"
)
height = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Height"
)
with gr.Row():
num_images = gr.Slider(
minimum=1, maximum=10, value=1, step=1, label="Number of Images"
)
batch_size = gr.Slider(
minimum=1, maximum=4, value=1, step=1, label="Batch Size"
)
with gr.Row():
hires_fix = gr.Checkbox(label="HiRes Fix")
adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
enhance_prompt = gr.Checkbox(label="Enhance Prompt")
stable_fast = gr.Checkbox(label="Stable Fast Mode")
with gr.Row():
reuse_seed = gr.Checkbox(label="Reuse Seed")
flux_enabled = gr.Checkbox(label="Flux Mode")
prio_speed = gr.Checkbox(label="Prioritize Speed")
realistic_model = gr.Checkbox(label="Realistic Model")
with gr.Row():
img2img_enabled = gr.Checkbox(label="Image to Image Mode")
img2img_image = gr.Image(label="Input Image for img2img", visible=False)
# Make input image visible only when img2img is enabled
img2img_enabled.change(
fn=lambda x: gr.update(visible=x),
inputs=[img2img_enabled],
outputs=[img2img_image],
)
generate_btn = gr.Button("Generate")
# Output gallery
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
height="auto",
)
# Connect generate button to pipeline
generate_btn.click(
fn=generate_images,
inputs=[
prompt,
width,
height,
num_images,
batch_size,
hires_fix,
adetailer,
enhance_prompt,
img2img_enabled,
img2img_image,
stable_fast,
reuse_seed,
flux_enabled,
prio_speed,
realistic_model,
],
outputs=gallery,
)
def is_huggingface_space():
return "SPACE_ID" in os.environ
# For local testing
if __name__ == "__main__":
if is_huggingface_space():
demo.launch(
debug=False,
server_name="0.0.0.0",
server_port=7860, # Standard HF Spaces port
)
else:
demo.launch(
server_name="0.0.0.0",
server_port=8000,
auth=None,
share=True, # Only enable sharing locally
debug=True,
)