Spaces:
Running
on
Zero
Running
on
Zero
increased duration
Browse files
app.py
CHANGED
@@ -1,216 +1,216 @@
|
|
1 |
-
import glob
|
2 |
-
import gradio as gr
|
3 |
-
import sys
|
4 |
-
import os
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
-
import spaces
|
8 |
-
|
9 |
-
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
10 |
-
|
11 |
-
from modules.user.pipeline import pipeline
|
12 |
-
import torch
|
13 |
-
|
14 |
-
|
15 |
-
def load_generated_images():
|
16 |
-
"""Load generated images with given prefix from disk"""
|
17 |
-
image_files = glob.glob("./_internal/output/**/*.png")
|
18 |
-
|
19 |
-
# If there are no image files, return
|
20 |
-
if not image_files:
|
21 |
-
return []
|
22 |
-
|
23 |
-
# Sort files by modification time in descending order
|
24 |
-
image_files.sort(key=os.path.getmtime, reverse=True)
|
25 |
-
|
26 |
-
# Get most recent timestamp
|
27 |
-
latest_time = os.path.getmtime(image_files[0])
|
28 |
-
|
29 |
-
# Get all images from same batch (within 1 second of most recent)
|
30 |
-
batch_images = []
|
31 |
-
for file in image_files:
|
32 |
-
if abs(os.path.getmtime(file) - latest_time) < 1.0:
|
33 |
-
try:
|
34 |
-
img = Image.open(file)
|
35 |
-
batch_images.append(img)
|
36 |
-
except:
|
37 |
-
continue
|
38 |
-
|
39 |
-
if not batch_images:
|
40 |
-
return []
|
41 |
-
return batch_images
|
42 |
-
|
43 |
-
|
44 |
-
@spaces.GPU
|
45 |
-
def generate_images(
|
46 |
-
prompt: str,
|
47 |
-
width: int = 512,
|
48 |
-
height: int = 512,
|
49 |
-
num_images: int = 1,
|
50 |
-
batch_size: int = 1,
|
51 |
-
hires_fix: bool = False,
|
52 |
-
adetailer: bool = False,
|
53 |
-
enhance_prompt: bool = False,
|
54 |
-
img2img_enabled: bool = False,
|
55 |
-
img2img_image: str = None,
|
56 |
-
stable_fast: bool = False,
|
57 |
-
reuse_seed: bool = False,
|
58 |
-
flux_enabled: bool = False,
|
59 |
-
prio_speed: bool = False,
|
60 |
-
realistic_model: bool = False,
|
61 |
-
progress=gr.Progress(),
|
62 |
-
):
|
63 |
-
"""Generate images using the LightDiffusion pipeline"""
|
64 |
-
try:
|
65 |
-
if img2img_enabled and img2img_image is not None:
|
66 |
-
# Convert numpy array to PIL Image
|
67 |
-
if isinstance(img2img_image, np.ndarray):
|
68 |
-
img_pil = Image.fromarray(img2img_image)
|
69 |
-
img_pil.save("temp_img2img.png")
|
70 |
-
prompt = "temp_img2img.png"
|
71 |
-
|
72 |
-
# Run pipeline and capture saved images
|
73 |
-
with torch.inference_mode():
|
74 |
-
pipeline(
|
75 |
-
prompt=prompt,
|
76 |
-
w=width,
|
77 |
-
h=height,
|
78 |
-
number=num_images,
|
79 |
-
batch=batch_size,
|
80 |
-
hires_fix=hires_fix,
|
81 |
-
adetailer=adetailer,
|
82 |
-
enhance_prompt=enhance_prompt,
|
83 |
-
img2img=img2img_enabled,
|
84 |
-
stable_fast=stable_fast,
|
85 |
-
reuse_seed=reuse_seed,
|
86 |
-
flux_enabled=flux_enabled,
|
87 |
-
prio_speed=prio_speed,
|
88 |
-
autohdr=True,
|
89 |
-
realistic_model=realistic_model,
|
90 |
-
)
|
91 |
-
|
92 |
-
# Clean up temporary file if it exists
|
93 |
-
if os.path.exists("temp_img2img.png"):
|
94 |
-
os.remove("temp_img2img.png")
|
95 |
-
|
96 |
-
return load_generated_images()
|
97 |
-
|
98 |
-
except Exception:
|
99 |
-
import traceback
|
100 |
-
|
101 |
-
print(traceback.format_exc())
|
102 |
-
# Clean up temporary file if it exists
|
103 |
-
if os.path.exists("temp_img2img.png"):
|
104 |
-
os.remove("temp_img2img.png")
|
105 |
-
return [Image.new("RGB", (512, 512), color="black")]
|
106 |
-
|
107 |
-
|
108 |
-
# Create Gradio interface
|
109 |
-
with gr.Blocks(title="LightDiffusion Web UI") as demo:
|
110 |
-
gr.Markdown("# LightDiffusion Web UI")
|
111 |
-
gr.Markdown("Generate AI images using LightDiffusion")
|
112 |
-
gr.Markdown(
|
113 |
-
"This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
|
114 |
-
)
|
115 |
-
|
116 |
-
with gr.Row():
|
117 |
-
with gr.Column():
|
118 |
-
# Input components
|
119 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
width = gr.Slider(
|
123 |
-
minimum=64, maximum=2048, value=512, step=64, label="Width"
|
124 |
-
)
|
125 |
-
height = gr.Slider(
|
126 |
-
minimum=64, maximum=2048, value=512, step=64, label="Height"
|
127 |
-
)
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
num_images = gr.Slider(
|
131 |
-
minimum=1, maximum=10, value=1, step=1, label="Number of Images"
|
132 |
-
)
|
133 |
-
batch_size = gr.Slider(
|
134 |
-
minimum=1, maximum=4, value=1, step=1, label="Batch Size"
|
135 |
-
)
|
136 |
-
|
137 |
-
with gr.Row():
|
138 |
-
hires_fix = gr.Checkbox(label="HiRes Fix")
|
139 |
-
adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
|
140 |
-
enhance_prompt = gr.Checkbox(label="Enhance Prompt")
|
141 |
-
stable_fast = gr.Checkbox(label="Stable Fast Mode")
|
142 |
-
|
143 |
-
with gr.Row():
|
144 |
-
reuse_seed = gr.Checkbox(label="Reuse Seed")
|
145 |
-
flux_enabled = gr.Checkbox(label="Flux Mode")
|
146 |
-
prio_speed = gr.Checkbox(label="Prioritize Speed")
|
147 |
-
realistic_model = gr.Checkbox(label="Realistic Model")
|
148 |
-
|
149 |
-
with gr.Row():
|
150 |
-
img2img_enabled = gr.Checkbox(label="Image to Image Mode")
|
151 |
-
img2img_image = gr.Image(label="Input Image for img2img", visible=False)
|
152 |
-
|
153 |
-
# Make input image visible only when img2img is enabled
|
154 |
-
img2img_enabled.change(
|
155 |
-
fn=lambda x: gr.update(visible=x),
|
156 |
-
inputs=[img2img_enabled],
|
157 |
-
outputs=[img2img_image],
|
158 |
-
)
|
159 |
-
|
160 |
-
generate_btn = gr.Button("Generate")
|
161 |
-
|
162 |
-
# Output gallery
|
163 |
-
gallery = gr.Gallery(
|
164 |
-
label="Generated Images",
|
165 |
-
show_label=True,
|
166 |
-
elem_id="gallery",
|
167 |
-
columns=[2],
|
168 |
-
rows=[2],
|
169 |
-
object_fit="contain",
|
170 |
-
height="auto",
|
171 |
-
)
|
172 |
-
|
173 |
-
# Connect generate button to pipeline
|
174 |
-
generate_btn.click(
|
175 |
-
fn=generate_images,
|
176 |
-
inputs=[
|
177 |
-
prompt,
|
178 |
-
width,
|
179 |
-
height,
|
180 |
-
num_images,
|
181 |
-
batch_size,
|
182 |
-
hires_fix,
|
183 |
-
adetailer,
|
184 |
-
enhance_prompt,
|
185 |
-
img2img_enabled,
|
186 |
-
img2img_image,
|
187 |
-
stable_fast,
|
188 |
-
reuse_seed,
|
189 |
-
flux_enabled,
|
190 |
-
prio_speed,
|
191 |
-
realistic_model,
|
192 |
-
],
|
193 |
-
outputs=gallery,
|
194 |
-
)
|
195 |
-
|
196 |
-
|
197 |
-
def is_huggingface_space():
|
198 |
-
return "SPACE_ID" in os.environ
|
199 |
-
|
200 |
-
|
201 |
-
# For local testing
|
202 |
-
if __name__ == "__main__":
|
203 |
-
if is_huggingface_space():
|
204 |
-
demo.launch(
|
205 |
-
debug=False,
|
206 |
-
server_name="0.0.0.0",
|
207 |
-
server_port=7860, # Standard HF Spaces port
|
208 |
-
)
|
209 |
-
else:
|
210 |
-
demo.launch(
|
211 |
-
server_name="0.0.0.0",
|
212 |
-
server_port=8000,
|
213 |
-
auth=None,
|
214 |
-
share=True, # Only enable sharing locally
|
215 |
-
debug=True,
|
216 |
-
)
|
|
|
1 |
+
import glob
|
2 |
+
import gradio as gr
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
|
9 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
10 |
+
|
11 |
+
from modules.user.pipeline import pipeline
|
12 |
+
import torch
|
13 |
+
|
14 |
+
|
15 |
+
def load_generated_images():
|
16 |
+
"""Load generated images with given prefix from disk"""
|
17 |
+
image_files = glob.glob("./_internal/output/**/*.png")
|
18 |
+
|
19 |
+
# If there are no image files, return
|
20 |
+
if not image_files:
|
21 |
+
return []
|
22 |
+
|
23 |
+
# Sort files by modification time in descending order
|
24 |
+
image_files.sort(key=os.path.getmtime, reverse=True)
|
25 |
+
|
26 |
+
# Get most recent timestamp
|
27 |
+
latest_time = os.path.getmtime(image_files[0])
|
28 |
+
|
29 |
+
# Get all images from same batch (within 1 second of most recent)
|
30 |
+
batch_images = []
|
31 |
+
for file in image_files:
|
32 |
+
if abs(os.path.getmtime(file) - latest_time) < 1.0:
|
33 |
+
try:
|
34 |
+
img = Image.open(file)
|
35 |
+
batch_images.append(img)
|
36 |
+
except:
|
37 |
+
continue
|
38 |
+
|
39 |
+
if not batch_images:
|
40 |
+
return []
|
41 |
+
return batch_images
|
42 |
+
|
43 |
+
|
44 |
+
@spaces.GPU(duration=300)
|
45 |
+
def generate_images(
|
46 |
+
prompt: str,
|
47 |
+
width: int = 512,
|
48 |
+
height: int = 512,
|
49 |
+
num_images: int = 1,
|
50 |
+
batch_size: int = 1,
|
51 |
+
hires_fix: bool = False,
|
52 |
+
adetailer: bool = False,
|
53 |
+
enhance_prompt: bool = False,
|
54 |
+
img2img_enabled: bool = False,
|
55 |
+
img2img_image: str = None,
|
56 |
+
stable_fast: bool = False,
|
57 |
+
reuse_seed: bool = False,
|
58 |
+
flux_enabled: bool = False,
|
59 |
+
prio_speed: bool = False,
|
60 |
+
realistic_model: bool = False,
|
61 |
+
progress=gr.Progress(),
|
62 |
+
):
|
63 |
+
"""Generate images using the LightDiffusion pipeline"""
|
64 |
+
try:
|
65 |
+
if img2img_enabled and img2img_image is not None:
|
66 |
+
# Convert numpy array to PIL Image
|
67 |
+
if isinstance(img2img_image, np.ndarray):
|
68 |
+
img_pil = Image.fromarray(img2img_image)
|
69 |
+
img_pil.save("temp_img2img.png")
|
70 |
+
prompt = "temp_img2img.png"
|
71 |
+
|
72 |
+
# Run pipeline and capture saved images
|
73 |
+
with torch.inference_mode():
|
74 |
+
pipeline(
|
75 |
+
prompt=prompt,
|
76 |
+
w=width,
|
77 |
+
h=height,
|
78 |
+
number=num_images,
|
79 |
+
batch=batch_size,
|
80 |
+
hires_fix=hires_fix,
|
81 |
+
adetailer=adetailer,
|
82 |
+
enhance_prompt=enhance_prompt,
|
83 |
+
img2img=img2img_enabled,
|
84 |
+
stable_fast=stable_fast,
|
85 |
+
reuse_seed=reuse_seed,
|
86 |
+
flux_enabled=flux_enabled,
|
87 |
+
prio_speed=prio_speed,
|
88 |
+
autohdr=True,
|
89 |
+
realistic_model=realistic_model,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Clean up temporary file if it exists
|
93 |
+
if os.path.exists("temp_img2img.png"):
|
94 |
+
os.remove("temp_img2img.png")
|
95 |
+
|
96 |
+
return load_generated_images()
|
97 |
+
|
98 |
+
except Exception:
|
99 |
+
import traceback
|
100 |
+
|
101 |
+
print(traceback.format_exc())
|
102 |
+
# Clean up temporary file if it exists
|
103 |
+
if os.path.exists("temp_img2img.png"):
|
104 |
+
os.remove("temp_img2img.png")
|
105 |
+
return [Image.new("RGB", (512, 512), color="black")]
|
106 |
+
|
107 |
+
|
108 |
+
# Create Gradio interface
|
109 |
+
with gr.Blocks(title="LightDiffusion Web UI") as demo:
|
110 |
+
gr.Markdown("# LightDiffusion Web UI")
|
111 |
+
gr.Markdown("Generate AI images using LightDiffusion")
|
112 |
+
gr.Markdown(
|
113 |
+
"This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
# Input components
|
119 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
width = gr.Slider(
|
123 |
+
minimum=64, maximum=2048, value=512, step=64, label="Width"
|
124 |
+
)
|
125 |
+
height = gr.Slider(
|
126 |
+
minimum=64, maximum=2048, value=512, step=64, label="Height"
|
127 |
+
)
|
128 |
+
|
129 |
+
with gr.Row():
|
130 |
+
num_images = gr.Slider(
|
131 |
+
minimum=1, maximum=10, value=1, step=1, label="Number of Images"
|
132 |
+
)
|
133 |
+
batch_size = gr.Slider(
|
134 |
+
minimum=1, maximum=4, value=1, step=1, label="Batch Size"
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
hires_fix = gr.Checkbox(label="HiRes Fix")
|
139 |
+
adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
|
140 |
+
enhance_prompt = gr.Checkbox(label="Enhance Prompt")
|
141 |
+
stable_fast = gr.Checkbox(label="Stable Fast Mode")
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
reuse_seed = gr.Checkbox(label="Reuse Seed")
|
145 |
+
flux_enabled = gr.Checkbox(label="Flux Mode")
|
146 |
+
prio_speed = gr.Checkbox(label="Prioritize Speed")
|
147 |
+
realistic_model = gr.Checkbox(label="Realistic Model")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
img2img_enabled = gr.Checkbox(label="Image to Image Mode")
|
151 |
+
img2img_image = gr.Image(label="Input Image for img2img", visible=False)
|
152 |
+
|
153 |
+
# Make input image visible only when img2img is enabled
|
154 |
+
img2img_enabled.change(
|
155 |
+
fn=lambda x: gr.update(visible=x),
|
156 |
+
inputs=[img2img_enabled],
|
157 |
+
outputs=[img2img_image],
|
158 |
+
)
|
159 |
+
|
160 |
+
generate_btn = gr.Button("Generate")
|
161 |
+
|
162 |
+
# Output gallery
|
163 |
+
gallery = gr.Gallery(
|
164 |
+
label="Generated Images",
|
165 |
+
show_label=True,
|
166 |
+
elem_id="gallery",
|
167 |
+
columns=[2],
|
168 |
+
rows=[2],
|
169 |
+
object_fit="contain",
|
170 |
+
height="auto",
|
171 |
+
)
|
172 |
+
|
173 |
+
# Connect generate button to pipeline
|
174 |
+
generate_btn.click(
|
175 |
+
fn=generate_images,
|
176 |
+
inputs=[
|
177 |
+
prompt,
|
178 |
+
width,
|
179 |
+
height,
|
180 |
+
num_images,
|
181 |
+
batch_size,
|
182 |
+
hires_fix,
|
183 |
+
adetailer,
|
184 |
+
enhance_prompt,
|
185 |
+
img2img_enabled,
|
186 |
+
img2img_image,
|
187 |
+
stable_fast,
|
188 |
+
reuse_seed,
|
189 |
+
flux_enabled,
|
190 |
+
prio_speed,
|
191 |
+
realistic_model,
|
192 |
+
],
|
193 |
+
outputs=gallery,
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
def is_huggingface_space():
|
198 |
+
return "SPACE_ID" in os.environ
|
199 |
+
|
200 |
+
|
201 |
+
# For local testing
|
202 |
+
if __name__ == "__main__":
|
203 |
+
if is_huggingface_space():
|
204 |
+
demo.launch(
|
205 |
+
debug=False,
|
206 |
+
server_name="0.0.0.0",
|
207 |
+
server_port=7860, # Standard HF Spaces port
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
demo.launch(
|
211 |
+
server_name="0.0.0.0",
|
212 |
+
server_port=8000,
|
213 |
+
auth=None,
|
214 |
+
share=True, # Only enable sharing locally
|
215 |
+
debug=True,
|
216 |
+
)
|