Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,607 Bytes
1329d8c f83908e 1329d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import glob
import gradio as gr
import sys
import os
from PIL import Image
import numpy as np
import spaces
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
from modules.user.pipeline import pipeline
import torch
def load_generated_images():
"""Load generated images with given prefix from disk"""
image_files = glob.glob("./_internal/output/**/*.png")
# If there are no image files, return
if not image_files:
return []
# Sort files by modification time in descending order
image_files.sort(key=os.path.getmtime, reverse=True)
# Get most recent timestamp
latest_time = os.path.getmtime(image_files[0])
# Get all images from same batch (within 1 second of most recent)
batch_images = []
for file in image_files:
if abs(os.path.getmtime(file) - latest_time) < 1.0:
try:
img = Image.open(file)
batch_images.append(img)
except:
continue
if not batch_images:
return []
return batch_images
@spaces.GPU(duration=120)
def generate_images(
prompt: str,
width: int = 512,
height: int = 512,
num_images: int = 1,
batch_size: int = 1,
hires_fix: bool = False,
adetailer: bool = False,
enhance_prompt: bool = False,
img2img_enabled: bool = False,
img2img_image: str = None,
stable_fast: bool = False,
reuse_seed: bool = False,
flux_enabled: bool = False,
prio_speed: bool = False,
realistic_model: bool = False,
progress=gr.Progress(),
):
"""Generate images using the LightDiffusion pipeline"""
try:
if img2img_enabled and img2img_image is not None:
# Convert numpy array to PIL Image
if isinstance(img2img_image, np.ndarray):
img_pil = Image.fromarray(img2img_image)
img_pil.save("temp_img2img.png")
prompt = "temp_img2img.png"
# Run pipeline and capture saved images
with torch.inference_mode():
pipeline(
prompt=prompt,
w=width,
h=height,
number=num_images,
batch=batch_size,
hires_fix=hires_fix,
adetailer=adetailer,
enhance_prompt=enhance_prompt,
img2img=img2img_enabled,
stable_fast=stable_fast,
reuse_seed=reuse_seed,
flux_enabled=flux_enabled,
prio_speed=prio_speed,
autohdr=True,
realistic_model=realistic_model,
)
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return load_generated_images()
except Exception:
import traceback
print(traceback.format_exc())
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return [Image.new("RGB", (512, 512), color="black")]
# Create Gradio interface
with gr.Blocks(title="LightDiffusion Web UI") as demo:
gr.Markdown("# LightDiffusion Web UI")
gr.Markdown("Generate AI images using LightDiffusion")
gr.Markdown(
"This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
)
with gr.Row():
with gr.Column():
# Input components
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
width = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Width"
)
height = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Height"
)
with gr.Row():
num_images = gr.Slider(
minimum=1, maximum=10, value=1, step=1, label="Number of Images"
)
batch_size = gr.Slider(
minimum=1, maximum=4, value=1, step=1, label="Batch Size"
)
with gr.Row():
hires_fix = gr.Checkbox(label="HiRes Fix")
adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
enhance_prompt = gr.Checkbox(label="Enhance Prompt")
stable_fast = gr.Checkbox(label="Stable Fast Mode")
with gr.Row():
reuse_seed = gr.Checkbox(label="Reuse Seed")
flux_enabled = gr.Checkbox(label="Flux Mode")
prio_speed = gr.Checkbox(label="Prioritize Speed")
realistic_model = gr.Checkbox(label="Realistic Model")
with gr.Row():
img2img_enabled = gr.Checkbox(label="Image to Image Mode")
img2img_image = gr.Image(label="Input Image for img2img", visible=False)
# Make input image visible only when img2img is enabled
img2img_enabled.change(
fn=lambda x: gr.update(visible=x),
inputs=[img2img_enabled],
outputs=[img2img_image],
)
generate_btn = gr.Button("Generate")
# Output gallery
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
height="auto",
)
# Connect generate button to pipeline
generate_btn.click(
fn=generate_images,
inputs=[
prompt,
width,
height,
num_images,
batch_size,
hires_fix,
adetailer,
enhance_prompt,
img2img_enabled,
img2img_image,
stable_fast,
reuse_seed,
flux_enabled,
prio_speed,
realistic_model,
],
outputs=gallery,
)
def is_huggingface_space():
return "SPACE_ID" in os.environ
# For local testing
if __name__ == "__main__":
if is_huggingface_space():
demo.launch(
debug=False,
server_name="0.0.0.0",
server_port=7860, # Standard HF Spaces port
)
else:
demo.launch(
server_name="0.0.0.0",
server_port=8000,
auth=None,
share=True, # Only enable sharing locally
debug=True,
)
|