Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.ensemble import RandomForestClassifier | |
import joblib | |
# Load and preprocess data | |
def load_and_preprocess_data(filename): | |
df = pd.read_csv(filename) | |
label_encoders = {} | |
for col in ["College Name", "Category", "Gender", "Branch", "Region"]: | |
le = LabelEncoder() | |
df[col] = le.fit_transform(df[col]) | |
label_encoders[col] = le | |
X = df[["Category", "Gender", "Opening Rank", "Closing Rank", "Region"]] | |
y_college_branch = df[["College Name", "Branch"]] | |
return X, y_college_branch, label_encoders, df | |
filename = "AP_EAMCET_Engineering_10000 (1).csv" | |
X, y_college_branch, label_encoders, df = load_and_preprocess_data(filename) | |
# Train model | |
def train_model(X, y): | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
model = RandomForestClassifier(n_estimators=100, random_state=42) | |
model.fit(X_train, y_train) | |
return model | |
college_branch_model = train_model(X, y_college_branch) | |
joblib.dump(college_branch_model, "college_branch_model.pkl") | |
joblib.dump(label_encoders, "label_encoders.pkl") | |
# Prediction function | |
def predict_colleges(category, gender, rank, region): | |
# Load label encoders | |
label_encoders = joblib.load("label_encoders.pkl") | |
# Transform input values using label encoders | |
try: | |
category_enc = label_encoders["Category"].transform([category])[0] | |
gender_enc = label_encoders["Gender"].transform([gender])[0] | |
region_enc = label_encoders["Region"].transform([region])[0] | |
except ValueError: | |
return "Invalid input values. Please select valid options." | |
# Filter the dataset based on encoded values | |
filtered_df = df[ | |
(df["Category"] == category_enc) & | |
(df["Gender"] == gender_enc) & | |
(df["Opening Rank"] <= rank) & | |
(df["Closing Rank"] >= rank) & | |
(df["Region"] == region_enc) | |
] | |
if filtered_df.empty: | |
return "No matching colleges found." | |
# Decode college names and branches | |
filtered_df["College Name"] = label_encoders["College Name"].inverse_transform(filtered_df["College Name"].values) | |
filtered_df["Branch"] = label_encoders["Branch"].inverse_transform(filtered_df["Branch"].values) | |
result = filtered_df[["College Name", "Branch"]].drop_duplicates() | |
return result | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=predict_colleges, | |
inputs=[ | |
gr.Dropdown(choices=["OC", "BC", "SC", "ST"], label="Category"), | |
gr.Radio(choices=["Male", "Female"], label="Gender"), | |
gr.Number(label="Rank"), | |
gr.Dropdown(choices=["AU", "SV"], label="Region") | |
], | |
outputs=gr.Dataframe(headers=["College Name", "Branch"]), | |
title="AP EAMCET College Predictor", | |
description="Enter your details to predict all possible colleges and branches based on your rank." | |
) | |
demo.launch() | |