Spaces:
Running
Running
the updated ones
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from sklearn.preprocessing import LabelEncoder
|
|
6 |
from sklearn.ensemble import RandomForestClassifier
|
7 |
import joblib
|
8 |
|
9 |
-
#
|
10 |
# Load and preprocess data
|
11 |
def load_and_preprocess_data(filename):
|
12 |
df = pd.read_csv(filename)
|
@@ -66,7 +65,7 @@ def predict_colleges(category, gender, rank, region):
|
|
66 |
filtered_df["College Name"] = label_encoders["College Name"].inverse_transform(filtered_df["College Name"].values)
|
67 |
filtered_df["Branch"] = label_encoders["Branch"].inverse_transform(filtered_df["Branch"].values)
|
68 |
|
69 |
-
result = filtered_df[["College Name", "Branch"]].drop_duplicates()
|
70 |
return result
|
71 |
|
72 |
# Gradio Interface
|
@@ -78,7 +77,7 @@ demo = gr.Interface(
|
|
78 |
gr.Number(label="Rank"),
|
79 |
gr.Dropdown(choices=["AU", "SV"], label="Region")
|
80 |
],
|
81 |
-
outputs="
|
82 |
title="AP EAMCET College Predictor",
|
83 |
description="Enter your details to predict all possible colleges and branches based on your rank."
|
84 |
)
|
|
|
6 |
from sklearn.ensemble import RandomForestClassifier
|
7 |
import joblib
|
8 |
|
|
|
9 |
# Load and preprocess data
|
10 |
def load_and_preprocess_data(filename):
|
11 |
df = pd.read_csv(filename)
|
|
|
65 |
filtered_df["College Name"] = label_encoders["College Name"].inverse_transform(filtered_df["College Name"].values)
|
66 |
filtered_df["Branch"] = label_encoders["Branch"].inverse_transform(filtered_df["Branch"].values)
|
67 |
|
68 |
+
result = filtered_df[["College Name", "Branch"]].drop_duplicates()
|
69 |
return result
|
70 |
|
71 |
# Gradio Interface
|
|
|
77 |
gr.Number(label="Rank"),
|
78 |
gr.Dropdown(choices=["AU", "SV"], label="Region")
|
79 |
],
|
80 |
+
outputs=gr.Dataframe(headers=["College Name", "Branch"]),
|
81 |
title="AP EAMCET College Predictor",
|
82 |
description="Enter your details to predict all possible colleges and branches based on your rank."
|
83 |
)
|