File size: 2,752 Bytes
2571a09
 
 
 
 
68bba7b
2571a09
42a1e5c
b40804f
 
68bba7b
b40804f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a1e5c
a826a95
 
68bba7b
2571a09
42a1e5c
 
b40804f
2571a09
 
 
 
 
 
 
 
 
a826a95
 
 
2ad848e
 
 
 
 
 
 
2571a09
b40804f
2571a09
 
2ad848e
2571a09
a826a95
2571a09
 
 
2ad848e
68bba7b
2ad848e
2571a09
 
 
 
 
 
 
42a1e5c
2571a09
 
b40804f
3d77d68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image, DDIMScheduler
import numpy as np
import spaces  # Make sure to import spaces

# Initialize the pipeline
pipeline = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16
)

# Configure the scheduler for the pipeline
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)

# Load IP adapter with specified weights and set the scale for each component
pipeline.load_ip_adapter(
    "h94/IP-Adapter",
    subfolder="sdxl_models",
    weight_name=[
        "ip-adapter-plus_sdxl_vit-h.safetensors",
        "ip-adapter-plus-face_sdxl_vit-h.safetensors"
    ]
)
pipeline.set_ip_adapter_scale([0.7, 0.5])

# Define the desired size for the images
desired_size = (1024, 1024)

@spaces.GPU
def transform_image(face_image):
    # Move the pipeline to the GPU inside the function
    pipeline.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(0)

    # Process the input face image
    if isinstance(face_image, Image.Image):
        processed_face_image = face_image
    elif isinstance(face_image, np.ndarray):
        processed_face_image = Image.fromarray(face_image)
    else:
        raise ValueError("Unsupported image format")

    # Resize the face image
    processed_face_image = processed_face_image.resize(desired_size, Image.LANCZOS)

    # Convert PIL images to PyTorch tensors
    processed_face_tensor = transforms.ToTensor()(processed_face_image).unsqueeze(0).to("cuda")
    style_image_tensor = transforms.ToTensor()(style_image).unsqueeze(0).to("cuda")

    # Ensure tensors are the correct shape (C, H, W)
    if processed_face_tensor.shape[1:] != (3, 1280, 1280):
        raise ValueError(f"Face image tensor shape is {processed_face_tensor.shape}, but expected shape is (3, 1280, 1280)")

    # Perform the transformation using the configured pipeline
    image = pipeline(
        prompt="soyjak",
        ip_adapter_image=[style_image_tensor, processed_face_tensor],
        negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
        num_inference_steps=30,
        generator=generator,
    ).images[0]

    # Move the pipeline back to CPU after processing to release GPU resources
    pipeline.to("cpu")
    return transforms.ToPILImage()(image.squeeze(0))

# Gradio interface setup
demo = gr.Interface(
    fn=transform_image,
    inputs=gr.Image(label="Upload your face image"),
    outputs=gr.Image(label="Your Soyjak"),
    title="InstaSoyjak - turn anyone into a Soyjak",
    description="All you need to do is upload an image. Please use responsibly.",
)

demo.queue(max_size=20)
demo.launch()