Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
5 |
-
from transformers import CLIPVisionModelWithProjection
|
6 |
import numpy as np
|
7 |
import spaces # Make sure to import spaces
|
8 |
|
9 |
-
# Initialize the pipeline
|
10 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
11 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
12 |
torch_dtype=torch.float16
|
@@ -26,14 +25,13 @@ pipeline.load_ip_adapter(
|
|
26 |
)
|
27 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
28 |
|
29 |
-
#
|
30 |
-
pipeline.to("cuda")
|
31 |
-
|
32 |
-
# Define the desired size
|
33 |
desired_size = (1024, 1024)
|
34 |
|
35 |
@spaces.GPU
|
36 |
def transform_image(face_image):
|
|
|
|
|
37 |
generator = torch.Generator(device="cuda").manual_seed(0)
|
38 |
|
39 |
# Process the input face image
|
@@ -60,7 +58,7 @@ def transform_image(face_image):
|
|
60 |
generator=generator,
|
61 |
).images[0]
|
62 |
|
63 |
-
# Move the pipeline back to CPU after processing
|
64 |
pipeline.to("cpu")
|
65 |
return image
|
66 |
|
@@ -70,7 +68,7 @@ demo = gr.Interface(
|
|
70 |
inputs=gr.Image(label="Upload your face image"),
|
71 |
outputs=gr.Image(label="Your Soyjak"),
|
72 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
73 |
-
description="All you need to do is upload an image. Please use responsibly.
|
74 |
)
|
75 |
|
76 |
demo.queue(max_size=20)
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from diffusers import AutoPipelineForText2Image, DDIMScheduler
|
|
|
5 |
import numpy as np
|
6 |
import spaces # Make sure to import spaces
|
7 |
|
8 |
+
# Initialize the pipeline
|
9 |
pipeline = AutoPipelineForText2Image.from_pretrained(
|
10 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
11 |
torch_dtype=torch.float16
|
|
|
25 |
)
|
26 |
pipeline.set_ip_adapter_scale([0.7, 0.5])
|
27 |
|
28 |
+
# Define the desired size for the images
|
|
|
|
|
|
|
29 |
desired_size = (1024, 1024)
|
30 |
|
31 |
@spaces.GPU
|
32 |
def transform_image(face_image):
|
33 |
+
# Move the pipeline to the GPU inside the function
|
34 |
+
pipeline.to("cuda")
|
35 |
generator = torch.Generator(device="cuda").manual_seed(0)
|
36 |
|
37 |
# Process the input face image
|
|
|
58 |
generator=generator,
|
59 |
).images[0]
|
60 |
|
61 |
+
# Move the pipeline back to CPU after processing if necessary
|
62 |
pipeline.to("cpu")
|
63 |
return image
|
64 |
|
|
|
68 |
inputs=gr.Image(label="Upload your face image"),
|
69 |
outputs=gr.Image(label="Your Soyjak"),
|
70 |
title="InstaSoyjak - turn anyone into a Soyjak",
|
71 |
+
description="All you need to do is upload an image. Please use responsibly.",
|
72 |
)
|
73 |
|
74 |
demo.queue(max_size=20)
|