Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,22 +4,13 @@ import numpy as np
|
|
4 |
import os
|
5 |
import PIL
|
6 |
import tensorflow as tf
|
7 |
-
|
8 |
from tensorflow import keras
|
9 |
-
from tensorflow.keras import layers
|
10 |
-
from tensorflow.keras.models import Sequential
|
11 |
-
|
12 |
-
|
13 |
from PIL import Image
|
14 |
import gdown
|
15 |
import zipfile
|
16 |
-
|
17 |
import pathlib
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
# Define the Google Drive shareable link
|
24 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
25 |
|
@@ -50,102 +41,49 @@ os.remove(local_zip_file)
|
|
50 |
# Convert the extracted directory path to a pathlib.Path object
|
51 |
data_dir = pathlib.Path(extracted_path)
|
52 |
|
53 |
-
# Print the directory structure to debug
|
54 |
-
for root, dirs, files in os.walk(extracted_path):
|
55 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
56 |
-
indent = ' ' * 4 * (level)
|
57 |
-
print(f"{indent}{os.path.basename(root)}/")
|
58 |
-
subindent = ' ' * 4 * (level + 1)
|
59 |
-
for f in files:
|
60 |
-
print(f"{subindent}{f}")
|
61 |
-
|
62 |
-
import pathlib
|
63 |
# Path to the dataset directory
|
64 |
-
data_dir =
|
65 |
-
data_dir = pathlib.Path(data_dir)
|
66 |
-
|
67 |
-
|
68 |
-
bees = list(data_dir.glob('bees/*'))
|
69 |
-
print(bees[0])
|
70 |
-
PIL.Image.open(str(bees[0]))
|
71 |
-
|
72 |
-
|
73 |
-
bees = list(data_dir.glob('bees/*'))
|
74 |
-
print(bees[0])
|
75 |
-
PIL.Image.open(str(bees[0]))
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
batch_size=32
|
80 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
class_names = train_ds.class_names
|
99 |
-
print(class_names)
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
plt.figure(figsize=(10, 10))
|
105 |
-
for images, labels in train_ds.take(1):
|
106 |
-
for i in range(9):
|
107 |
-
ax = plt.subplot(3, 3, i + 1)
|
108 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
109 |
-
plt.title(class_names[labels[i]])
|
110 |
-
plt.axis("off")
|
111 |
-
|
112 |
-
|
113 |
-
data_augmentation = keras.Sequential(
|
114 |
-
[
|
115 |
-
layers.RandomFlip("horizontal",
|
116 |
-
input_shape=(img_height,
|
117 |
-
img_width,
|
118 |
-
3)),
|
119 |
layers.RandomRotation(0.1),
|
120 |
layers.RandomZoom(0.1),
|
121 |
-
|
122 |
-
)
|
123 |
-
|
124 |
-
|
125 |
-
plt.figure(figsize=(10, 10))
|
126 |
-
for images, _ in train_ds.take(1):
|
127 |
-
for i in range(9):
|
128 |
-
augmented_images = data_augmentation(images)
|
129 |
-
ax = plt.subplot(3, 3, i + 1)
|
130 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
131 |
-
plt.axis("off")
|
132 |
-
|
133 |
|
134 |
num_classes = len(class_names)
|
135 |
model = Sequential([
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
])
|
150 |
|
151 |
model.compile(optimizer='adam',
|
@@ -154,16 +92,13 @@ model.compile(optimizer='adam',
|
|
154 |
|
155 |
model.summary()
|
156 |
|
157 |
-
|
158 |
epochs = 15
|
159 |
history = model.fit(
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
# Define category descriptions
|
168 |
category_descriptions = {
|
169 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
@@ -214,4 +149,3 @@ gr.Interface(
|
|
214 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
215 |
css=custom_css
|
216 |
).launch(debug=True)
|
217 |
-
|
|
|
4 |
import os
|
5 |
import PIL
|
6 |
import tensorflow as tf
|
|
|
7 |
from tensorflow import keras
|
8 |
+
from tensorflow.keras import layers, Sequential
|
|
|
|
|
|
|
9 |
from PIL import Image
|
10 |
import gdown
|
11 |
import zipfile
|
|
|
12 |
import pathlib
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Define the Google Drive shareable link
|
15 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
16 |
|
|
|
41 |
# Convert the extracted directory path to a pathlib.Path object
|
42 |
data_dir = pathlib.Path(extracted_path)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Path to the dataset directory
|
45 |
+
data_dir = data_dir / 'Pest_Dataset'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Load dataset
|
|
|
48 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
49 |
+
data_dir,
|
50 |
+
validation_split=0.2,
|
51 |
+
subset="training",
|
52 |
+
seed=123,
|
53 |
+
image_size=(180, 180),
|
54 |
+
batch_size=32)
|
|
|
55 |
|
56 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
57 |
+
data_dir,
|
58 |
+
validation_split=0.2,
|
59 |
+
subset="validation",
|
60 |
+
seed=123,
|
61 |
+
image_size=(180, 180),
|
62 |
+
batch_size=32)
|
|
|
63 |
|
64 |
class_names = train_ds.class_names
|
|
|
65 |
|
66 |
+
data_augmentation = Sequential([
|
67 |
+
layers.RandomFlip("horizontal"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
layers.RandomRotation(0.1),
|
69 |
layers.RandomZoom(0.1),
|
70 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
num_classes = len(class_names)
|
73 |
model = Sequential([
|
74 |
+
data_augmentation,
|
75 |
+
layers.Rescaling(1./255),
|
76 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
77 |
+
layers.MaxPooling2D(),
|
78 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
79 |
+
layers.MaxPooling2D(),
|
80 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
81 |
+
layers.MaxPooling2D(),
|
82 |
+
layers.Dropout(0.5),
|
83 |
+
layers.Flatten(),
|
84 |
+
layers.Dense(256, activation='relu'),
|
85 |
+
layers.Dropout(0.5),
|
86 |
+
layers.Dense(num_classes, activation='softmax')
|
87 |
])
|
88 |
|
89 |
model.compile(optimizer='adam',
|
|
|
92 |
|
93 |
model.summary()
|
94 |
|
|
|
95 |
epochs = 15
|
96 |
history = model.fit(
|
97 |
+
train_ds,
|
98 |
+
validation_data=val_ds,
|
99 |
+
epochs=epochs
|
100 |
)
|
101 |
|
|
|
|
|
102 |
# Define category descriptions
|
103 |
category_descriptions = {
|
104 |
"Ants": "Ants are small insects known for their complex social structures and teamwork.",
|
|
|
149 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
150 |
css=custom_css
|
151 |
).launch(debug=True)
|
|