Spaces:
Runtime error
Runtime error
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import os | |
import PIL | |
import tensorflow as tf | |
from tensorflow import keras | |
from tensorflow.keras import layers | |
from tensorflow.keras.models import Sequential | |
import gdown | |
import zipfile | |
import pathlib | |
# Define the Google Drive shareable link | |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link' | |
# Extract the file ID from the URL | |
file_id = gdrive_url.split('/d/')[1].split('/view')[0] | |
direct_download_url = f'https://drive.google.com/uc?id={file_id}' | |
# Define the local filename to save the ZIP file | |
local_zip_file = 'file.zip' | |
# Download the ZIP file | |
gdown.download(direct_download_url, local_zip_file, quiet=False) | |
# Directory to extract files | |
extracted_path = 'extracted_files' | |
# Verify if the downloaded file is a ZIP file and extract it | |
try: | |
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: | |
zip_ref.extractall(extracted_path) | |
print("Extraction successful!") | |
except zipfile.BadZipFile: | |
print("Error: The downloaded file is not a valid ZIP file.") | |
# Optionally, you can delete the ZIP file after extraction | |
os.remove(local_zip_file) | |
# Convert the extracted directory path to a pathlib.Path object | |
data_dir = pathlib.Path(extracted_path) | |
# Print the directory structure to debug | |
for root, dirs, files in os.walk(extracted_path): | |
level = root.replace(extracted_path, '').count(os.sep) | |
indent = ' ' * 4 * (level) | |
print(f"{indent}{os.path.basename(root)}/") | |
subindent = ' ' * 4 * (level + 1) | |
for f in files: | |
print(f"{subindent}{f}") | |
# Path to the dataset directory | |
data_dir = pathlib.Path('extracted_files/Pest_Dataset') | |
image_count = len(list(data_dir.glob('*/*.jpg'))) | |
print(image_count) | |
bees = list(data_dir.glob('bees/*')) | |
print(bees[0]) | |
PIL.Image.open(str(bees[0])) | |
batch_size = 32 | |
img_height = 180 | |
img_width = 180 | |
train_ds = tf.keras.utils.image_dataset_from_directory( | |
data_dir, | |
validation_split=0.2, | |
subset="training", | |
seed=123, | |
image_size=(img_height, img_width), | |
batch_size=batch_size) | |
val_ds = tf.keras.utils.image_dataset_from_directory( | |
data_dir, | |
validation_split=0.2, | |
subset="validation", | |
seed=123, | |
image_size=(img_height, img_width), | |
batch_size=batch_size) | |
class_names = train_ds.class_names | |
print(class_names) | |
plt.figure(figsize=(10, 10)) | |
for images, labels in train_ds.take(1): | |
for i in range(9): | |
ax = plt.subplot(3, 3, i + 1) | |
plt.imshow(images[i].numpy().astype("uint8")) | |
plt.title(class_names[labels[i]]) | |
plt.axis("off") | |
for image_batch, labels_batch in train_ds: | |
print(image_batch.shape) | |
print(labels_batch.shape) | |
break | |
AUTOTUNE = tf.data.AUTOTUNE | |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) | |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) | |
normalization_layer = layers.Rescaling(1./255) | |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) | |
image_batch, labels_batch = next(iter(normalized_ds)) | |
first_image = image_batch[0] | |
# Notice the pixel values are now in `[0,1]`. | |
print(np.min(first_image), np.max(first_image)) | |
data_augmentation = keras.Sequential( | |
[ | |
layers.RandomFlip("horizontal", | |
input_shape=(img_height, | |
img_width, | |
3)), | |
layers.RandomRotation(0.1), | |
layers.RandomZoom(0.1), | |
layers.RandomContrast(0.1), | |
] | |
) | |
plt.figure(figsize=(10, 10)) | |
for images, _ in train_ds.take(1): | |
for i in range(9): | |
augmented_images = data_augmentation(images) | |
ax = plt.subplot(3, 3, i + 1) | |
plt.imshow(augmented_images[0].numpy().astype("uint8")) | |
plt.axis("off") | |
from tensorflow.keras.applications import EfficientNetB0 | |
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3)) | |
# Freeze the pre-trained weights | |
base_model.trainable = False | |
# Create new model on top | |
inputs = keras.Input(shape=(img_height, img_width, 3)) | |
x = data_augmentation(inputs) # Apply data augmentation | |
x = base_model(x, training=False) | |
x = keras.layers.GlobalAveragePooling2D()(x) | |
x = keras.layers.Dropout(0.2)(x) | |
outputs = keras.layers.Dense(len(class_names), activation='softmax')(x) | |
# Compile the model | |
model = keras.Model(inputs, outputs) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) | |
model.summary() | |
# Train the model | |
epochs = 10 | |
history = model.fit( | |
train_ds, | |
validation_data=val_ds, | |
epochs=epochs | |
) | |
# Plot training history | |
acc = history.history['accuracy'] | |
val_acc = history.history['val_accuracy'] | |
loss = history.history['loss'] | |
val_loss = history.history['val_loss'] | |
epochs_range = range(epochs) | |
plt.figure(figsize=(8, 8)) | |
plt.subplot(1, 2, 1) | |
plt.plot(epochs_range, acc, label='Training Accuracy') | |
plt.plot(epochs_range, val_acc, label='Validation Accuracy') | |
plt.legend(loc='lower right') | |
plt.title('Training and Validation Accuracy') | |
plt.subplot(1, 2, 2) | |
plt.plot(epochs_range, loss, label='Training Loss') | |
plt.plot(epochs_range, val_loss, label='Validation Loss') | |
plt.legend(loc='upper right') | |
plt.title('Training and Validation Loss') | |
plt.show() | |
test_ds = tf.keras.utils.image_dataset_from_directory( | |
data_dir, | |
validation_split=0.2, | |
subset="validation", | |
seed=123, | |
image_size=(img_height, img_width), | |
batch_size=batch_size) | |
results = model.evaluate(test_ds, verbose=0) | |
print(" Test Loss: {:.5f}".format(results[0])) | |
print("Test Accuracy: {:.2f}%".format(results[1] * 100)) | |
# Metrics | |
y_true = [] | |
y_pred = [] | |
for images, labels in test_ds: | |
y_true.extend(labels.numpy()) | |
preds = model.predict(images) | |
y_pred.extend(np.argmax(preds, axis=1)) | |
from sklearn.metrics import classification_report, confusion_matrix | |
print(classification_report(y_true, y_pred, target_names=class_names)) | |
import pandas as pd | |
report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True) | |
df = pd.DataFrame(report).transpose() | |
print(df) | |
def make_confusion_matrix(y_true, y_pred, labels): | |
cm = confusion_matrix(y_true, y_pred) | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
cax = ax.matshow(cm, cmap=plt.cm.Blues) | |
plt.title('Confusion Matrix') | |
fig.colorbar(cax) | |
ax.set_xticklabels([''] + labels, rotation=90) | |
ax.set_yticklabels([''] + labels) | |
plt.xlabel('Predicted') | |
plt.ylabel('True') | |
plt.show() | |
make_confusion_matrix(y_true, y_pred, class_names) | |
def predict_image(img): | |
img = np.array(img) | |
img_resized = tf.image.resize(img, (180, 180)) | |
img_4d = tf.expand_dims(img_resized, axis=0) | |
prediction = model.predict(img_4d)[0] | |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} | |
image = gr.Image(type="pil") | |
label = gr.Label(num_top_classes=12) | |
# Define custom CSS for background image | |
custom_css = """ | |
body { | |
background-image: url('/extracted_files/Pest_Dataset/bees/bees (444).jpg'); | |
background-size: cover; | |
background-repeat: no-repeat; | |
background-attachment: fixed; | |
color: white; | |
} | |
""" | |
gr.Interface( | |
fn=predict_image, | |
inputs=image, | |
outputs=label, | |
title="PestScout: An Agricultural Pest Image Classification System Using Convolutional Neural Networks", | |
description="Upload an image of a pest to classify it into one of the predefined categories.", | |
css=custom_css | |
).launch(debug=True) |