Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -61,10 +61,6 @@ bees = list(data_dir.glob('bees/*'))
|
|
61 |
print(bees[0])
|
62 |
PIL.Image.open(str(bees[0]))
|
63 |
|
64 |
-
bees = list(data_dir.glob('bees/*'))
|
65 |
-
print(bees[0])
|
66 |
-
PIL.Image.open(str(bees[0]))
|
67 |
-
|
68 |
batch_size = 32
|
69 |
img_height = 180
|
70 |
img_width = 180
|
@@ -90,21 +86,6 @@ val_ds = tf.keras.utils.image_dataset_from_directory(
|
|
90 |
class_names = train_ds.class_names
|
91 |
print(class_names)
|
92 |
|
93 |
-
import matplotlib.pyplot as plt
|
94 |
-
|
95 |
-
plt.figure(figsize=(10, 10))
|
96 |
-
for images, labels in train_ds.take(1):
|
97 |
-
for i in range(9):
|
98 |
-
ax = plt.subplot(3, 3, i + 1)
|
99 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
100 |
-
plt.title(class_names[labels[i]])
|
101 |
-
plt.axis("off")
|
102 |
-
|
103 |
-
for image_batch, labels_batch in train_ds:
|
104 |
-
print(image_batch.shape)
|
105 |
-
print(labels_batch.shape)
|
106 |
-
break
|
107 |
-
|
108 |
AUTOTUNE = tf.data.AUTOTUNE
|
109 |
|
110 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
@@ -112,12 +93,6 @@ val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
|
112 |
|
113 |
normalization_layer = layers.Rescaling(1./255)
|
114 |
|
115 |
-
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
116 |
-
image_batch, labels_batch = next(iter(normalized_ds))
|
117 |
-
first_image = image_batch[0]
|
118 |
-
# Notice the pixel values are now in `[0,1]`.
|
119 |
-
print(np.min(first_image), np.max(first_image))
|
120 |
-
|
121 |
num_classes = len(class_names)
|
122 |
|
123 |
data_augmentation = keras.Sequential(
|
@@ -128,17 +103,10 @@ data_augmentation = keras.Sequential(
|
|
128 |
]
|
129 |
)
|
130 |
|
131 |
-
|
132 |
-
for images, _ in train_ds.take(1):
|
133 |
-
for i in range(9):
|
134 |
-
augmented_images = data_augmentation(images)
|
135 |
-
ax = plt.subplot(3, 3, i + 1)
|
136 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
137 |
-
plt.axis("off")
|
138 |
-
|
139 |
model = Sequential([
|
140 |
data_augmentation,
|
141 |
-
|
142 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
143 |
layers.MaxPooling2D(),
|
144 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
@@ -147,9 +115,14 @@ model = Sequential([
|
|
147 |
layers.MaxPooling2D(),
|
148 |
layers.Conv2D(256, 3, padding='same', activation='relu'),
|
149 |
layers.MaxPooling2D(),
|
150 |
-
layers.
|
|
|
|
|
|
|
|
|
151 |
layers.Flatten(),
|
152 |
-
layers.Dense(
|
|
|
153 |
layers.Dense(num_classes, activation='softmax')
|
154 |
])
|
155 |
|
@@ -168,7 +141,7 @@ history = model.fit(
|
|
168 |
|
169 |
def predict_image(img):
|
170 |
img = np.array(img)
|
171 |
-
img_resized = tf.image.resize(img, (
|
172 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
173 |
prediction = model.predict(img_4d)[0]
|
174 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
@@ -176,7 +149,6 @@ def predict_image(img):
|
|
176 |
image = gr.Image()
|
177 |
label = gr.Label(num_top_classes=1)
|
178 |
|
179 |
-
# Define custom CSS for background image
|
180 |
custom_css = """
|
181 |
body {
|
182 |
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|
|
|
61 |
print(bees[0])
|
62 |
PIL.Image.open(str(bees[0]))
|
63 |
|
|
|
|
|
|
|
|
|
64 |
batch_size = 32
|
65 |
img_height = 180
|
66 |
img_width = 180
|
|
|
86 |
class_names = train_ds.class_names
|
87 |
print(class_names)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
AUTOTUNE = tf.data.AUTOTUNE
|
90 |
|
91 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
|
|
93 |
|
94 |
normalization_layer = layers.Rescaling(1./255)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
num_classes = len(class_names)
|
97 |
|
98 |
data_augmentation = keras.Sequential(
|
|
|
103 |
]
|
104 |
)
|
105 |
|
106 |
+
# Define a deeper convolutional neural network
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
model = Sequential([
|
108 |
data_augmentation,
|
109 |
+
normalization_layer,
|
110 |
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
111 |
layers.MaxPooling2D(),
|
112 |
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
|
|
115 |
layers.MaxPooling2D(),
|
116 |
layers.Conv2D(256, 3, padding='same', activation='relu'),
|
117 |
layers.MaxPooling2D(),
|
118 |
+
layers.Conv2D(512, 3, padding='same', activation='relu'),
|
119 |
+
layers.MaxPooling2D(),
|
120 |
+
layers.Conv2D(512, 3, padding='same', activation='relu'),
|
121 |
+
layers.MaxPooling2D(),
|
122 |
+
layers.Dropout(0.5),
|
123 |
layers.Flatten(),
|
124 |
+
layers.Dense(1024, activation='relu'),
|
125 |
+
layers.Dropout(0.5),
|
126 |
layers.Dense(num_classes, activation='softmax')
|
127 |
])
|
128 |
|
|
|
141 |
|
142 |
def predict_image(img):
|
143 |
img = np.array(img)
|
144 |
+
img_resized = tf.image.resize(img, (img_height, img_width))
|
145 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
146 |
prediction = model.predict(img_4d)[0]
|
147 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
|
|
149 |
image = gr.Image()
|
150 |
label = gr.Label(num_top_classes=1)
|
151 |
|
|
|
152 |
custom_css = """
|
153 |
body {
|
154 |
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
|