Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
!pip install gradio
|
| 2 |
import gradio as gr
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
|
@@ -10,14 +9,11 @@ from tensorflow import keras
|
|
| 10 |
from tensorflow.keras import layers
|
| 11 |
from tensorflow.keras.models import Sequential
|
| 12 |
|
| 13 |
-
|
| 14 |
from PIL import Image
|
| 15 |
import gdown
|
| 16 |
import zipfile
|
| 17 |
-
|
| 18 |
import pathlib
|
| 19 |
|
| 20 |
-
|
| 21 |
# Define the Google Drive shareable link
|
| 22 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 23 |
|
|
@@ -57,158 +53,119 @@ for root, dirs, files in os.walk(extracted_path):
|
|
| 57 |
for f in files:
|
| 58 |
print(f"{subindent}{f}")
|
| 59 |
|
| 60 |
-
|
| 61 |
# Path to the dataset directory
|
| 62 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 63 |
data_dir = pathlib.Path(data_dir)
|
| 64 |
|
| 65 |
-
|
| 66 |
bees = list(data_dir.glob('bees/*'))
|
| 67 |
print(bees[0])
|
| 68 |
PIL.Image.open(str(bees[0]))
|
| 69 |
|
| 70 |
-
|
| 71 |
bees = list(data_dir.glob('bees/*'))
|
| 72 |
print(bees[0])
|
| 73 |
PIL.Image.open(str(bees[0]))
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
batch_size = 32
|
| 78 |
img_height = 180
|
| 79 |
img_width = 180
|
| 80 |
|
| 81 |
-
|
| 82 |
train_ds = tf.keras.utils.image_dataset_from_directory(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
class_names = train_ds.class_names
|
| 101 |
print(class_names)
|
| 102 |
|
| 103 |
-
|
| 104 |
import matplotlib.pyplot as plt
|
| 105 |
|
| 106 |
plt.figure(figsize=(10, 10))
|
| 107 |
for images, labels in train_ds.take(1):
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
|
| 116 |
for image_batch, labels_batch in train_ds:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
| 122 |
AUTOTUNE = tf.data.AUTOTUNE
|
| 123 |
|
| 124 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
| 125 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
| 126 |
|
| 127 |
-
|
| 128 |
normalization_layer = layers.Rescaling(1./255)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
| 136 |
image_batch, labels_batch = next(iter(normalized_ds))
|
| 137 |
first_image = image_batch[0]
|
| 138 |
# Notice the pixel values are now in `[0,1]`.
|
| 139 |
print(np.min(first_image), np.max(first_image))
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
num_classes = len(class_names)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
data_augmentation = keras.Sequential(
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
layers.RandomRotation(0.1),
|
| 159 |
-
layers.RandomZoom(0.1),
|
| 160 |
-
]
|
| 161 |
)
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
plt.figure(figsize=(10, 10))
|
| 166 |
for images, _ in train_ds.take(1):
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
model = Sequential([
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
])
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
model.compile(optimizer='adam',
|
| 195 |
-
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 196 |
metrics=['accuracy'])
|
| 197 |
|
| 198 |
-
|
| 199 |
model.summary()
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
epochs = 15
|
| 204 |
history = model.fit(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
)
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
def predict_image(img):
|
| 213 |
img = np.array(img)
|
| 214 |
img_resized = tf.image.resize(img, (180, 180))
|
|
@@ -238,10 +195,3 @@ gr.Interface(
|
|
| 238 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 239 |
css=custom_css
|
| 240 |
).launch(debug=True)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import numpy as np
|
|
|
|
| 9 |
from tensorflow.keras import layers
|
| 10 |
from tensorflow.keras.models import Sequential
|
| 11 |
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
import gdown
|
| 14 |
import zipfile
|
|
|
|
| 15 |
import pathlib
|
| 16 |
|
|
|
|
| 17 |
# Define the Google Drive shareable link
|
| 18 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 19 |
|
|
|
|
| 53 |
for f in files:
|
| 54 |
print(f"{subindent}{f}")
|
| 55 |
|
|
|
|
| 56 |
# Path to the dataset directory
|
| 57 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 58 |
data_dir = pathlib.Path(data_dir)
|
| 59 |
|
|
|
|
| 60 |
bees = list(data_dir.glob('bees/*'))
|
| 61 |
print(bees[0])
|
| 62 |
PIL.Image.open(str(bees[0]))
|
| 63 |
|
|
|
|
| 64 |
bees = list(data_dir.glob('bees/*'))
|
| 65 |
print(bees[0])
|
| 66 |
PIL.Image.open(str(bees[0]))
|
| 67 |
|
|
|
|
|
|
|
| 68 |
batch_size = 32
|
| 69 |
img_height = 180
|
| 70 |
img_width = 180
|
| 71 |
|
|
|
|
| 72 |
train_ds = tf.keras.utils.image_dataset_from_directory(
|
| 73 |
+
data_dir,
|
| 74 |
+
validation_split=0.2,
|
| 75 |
+
subset="training",
|
| 76 |
+
seed=123,
|
| 77 |
+
image_size=(img_height, img_width),
|
| 78 |
+
batch_size=batch_size
|
| 79 |
+
)
|
| 80 |
|
| 81 |
val_ds = tf.keras.utils.image_dataset_from_directory(
|
| 82 |
+
data_dir,
|
| 83 |
+
validation_split=0.2,
|
| 84 |
+
subset="validation",
|
| 85 |
+
seed=123,
|
| 86 |
+
image_size=(img_height, img_width),
|
| 87 |
+
batch_size=batch_size
|
| 88 |
+
)
|
| 89 |
|
| 90 |
class_names = train_ds.class_names
|
| 91 |
print(class_names)
|
| 92 |
|
|
|
|
| 93 |
import matplotlib.pyplot as plt
|
| 94 |
|
| 95 |
plt.figure(figsize=(10, 10))
|
| 96 |
for images, labels in train_ds.take(1):
|
| 97 |
+
for i in range(9):
|
| 98 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 99 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 100 |
+
plt.title(class_names[labels[i]])
|
| 101 |
+
plt.axis("off")
|
|
|
|
|
|
|
| 102 |
|
| 103 |
for image_batch, labels_batch in train_ds:
|
| 104 |
+
print(image_batch.shape)
|
| 105 |
+
print(labels_batch.shape)
|
| 106 |
+
break
|
|
|
|
| 107 |
|
| 108 |
AUTOTUNE = tf.data.AUTOTUNE
|
| 109 |
|
| 110 |
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
|
| 111 |
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
| 112 |
|
|
|
|
| 113 |
normalization_layer = layers.Rescaling(1./255)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
|
| 116 |
image_batch, labels_batch = next(iter(normalized_ds))
|
| 117 |
first_image = image_batch[0]
|
| 118 |
# Notice the pixel values are now in `[0,1]`.
|
| 119 |
print(np.min(first_image), np.max(first_image))
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
num_classes = len(class_names)
|
| 122 |
|
|
|
|
|
|
|
|
|
|
| 123 |
data_augmentation = keras.Sequential(
|
| 124 |
+
[
|
| 125 |
+
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
| 126 |
+
layers.RandomRotation(0.1),
|
| 127 |
+
layers.RandomZoom(0.1),
|
| 128 |
+
]
|
|
|
|
|
|
|
|
|
|
| 129 |
)
|
| 130 |
|
|
|
|
|
|
|
| 131 |
plt.figure(figsize=(10, 10))
|
| 132 |
for images, _ in train_ds.take(1):
|
| 133 |
+
for i in range(9):
|
| 134 |
+
augmented_images = data_augmentation(images)
|
| 135 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 136 |
+
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
| 137 |
+
plt.axis("off")
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
model = Sequential([
|
| 140 |
+
data_augmentation,
|
| 141 |
+
layers.Rescaling(1./255),
|
| 142 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 143 |
+
layers.MaxPooling2D(),
|
| 144 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 145 |
+
layers.MaxPooling2D(),
|
| 146 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
| 147 |
+
layers.MaxPooling2D(),
|
| 148 |
+
layers.Conv2D(256, 3, padding='same', activation='relu'),
|
| 149 |
+
layers.MaxPooling2D(),
|
| 150 |
+
layers.Dropout(0.2),
|
| 151 |
+
layers.Flatten(),
|
| 152 |
+
layers.Dense(512, activation='relu'),
|
| 153 |
+
layers.Dense(num_classes, activation='softmax')
|
| 154 |
])
|
| 155 |
|
| 156 |
+
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001),
|
| 157 |
+
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
|
|
|
|
|
|
|
|
|
| 158 |
metrics=['accuracy'])
|
| 159 |
|
|
|
|
| 160 |
model.summary()
|
| 161 |
|
|
|
|
|
|
|
| 162 |
epochs = 15
|
| 163 |
history = model.fit(
|
| 164 |
+
train_ds,
|
| 165 |
+
validation_data=val_ds,
|
| 166 |
+
epochs=epochs
|
| 167 |
)
|
| 168 |
|
|
|
|
|
|
|
| 169 |
def predict_image(img):
|
| 170 |
img = np.array(img)
|
| 171 |
img_resized = tf.image.resize(img, (180, 180))
|
|
|
|
| 195 |
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
|
| 196 |
css=custom_css
|
| 197 |
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|