File size: 3,964 Bytes
8defc61
 
 
 
206ed66
8defc61
206ed66
604feee
 
206ed66
 
 
 
 
 
 
 
 
 
8defc61
 
 
 
 
 
 
 
206ed66
 
 
 
8defc61
 
206ed66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8defc61
604feee
 
 
206ed66
 
 
8defc61
 
206ed66
8defc61
 
206ed66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8defc61
604feee
8defc61
 
 
 
604feee
 
8defc61
206ed66
8defc61
 
 
 
604feee
 
206ed66
604feee
 
206ed66
604feee
 
 
 
 
8defc61
 
604feee
 
 
 
 
 
8defc61
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Hint: this cheatsheet is magic! https://cheat-sheet.streamlit.app/
import constants
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
from transformers import BertForSequenceClassification, AutoTokenizer

import altair as alt
from altair import X, Y, Scale
import base64


@st.cache_data
def render_svg(svg):
    """Renders the given svg string."""
    b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
    html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}"/> </p>'
    c = st.container()
    c.write(html, unsafe_allow_html=True)


@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=None).encode("utf-8")


@st.cache_resource
def load_model(model_name):
    model = BertForSequenceClassification.from_pretrained(model_name)
    return model


tokenizer = AutoTokenizer.from_pretrained(constants.MODEL_NAME)
model = load_model(constants.MODEL_NAME)


def compute_ALDi(sentences):
    # TODO: Perform inference in batches
    progress_text = "Computing ALDi..."
    my_bar = st.progress(0, text=progress_text)

    BATCH_SIZE = 4
    output_logits = []
    for first_index in range(0, len(sentences), BATCH_SIZE):
        inputs = tokenizer(
            sentences[first_index : first_index + BATCH_SIZE],
            return_tensors="pt",
            padding=True,
        )
        outputs = model(**inputs).logits.reshape(-1).tolist()
        output_logits = output_logits + [max(min(o, 1), 0) for o in outputs]
        my_bar.progress(
            min((first_index + BATCH_SIZE) / len(sentences), 1), text=progress_text
        )
    my_bar.empty()
    return output_logits


render_svg(open("assets/ALDi_logo.svg").read())

tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])

with tab1:
    sent = st.text_input(
        "Arabic Sentence:", placeholder="Enter an Arabic sentence.", on_change=None
    )

    # TODO: Check if this is needed!
    clicked = st.button("Submit")

    if sent:
        ALDi_score = compute_ALDi([sent])[0]

        ORANGE_COLOR = "#FF8000"
        fig, ax = plt.subplots(figsize=(8, 1))
        fig.patch.set_facecolor("none")
        ax.set_facecolor("none")

        ax.spines["left"].set_color(ORANGE_COLOR)
        ax.spines["bottom"].set_color(ORANGE_COLOR)
        ax.tick_params(axis="x", colors=ORANGE_COLOR)

        ax.spines[["right", "top"]].set_visible(False)

        ax.barh(y=[0], width=[ALDi_score], color=ORANGE_COLOR)
        ax.set_xlim(0, 1)
        ax.set_ylim(-1, 1)
        ax.set_title(f"ALDi score is: {round(ALDi_score, 3)}", color=ORANGE_COLOR)
        ax.get_yaxis().set_visible(False)
        ax.set_xlabel("ALDi score", color=ORANGE_COLOR)
        st.pyplot(fig)

with tab2:
    file = st.file_uploader("Upload a file", type=["txt"])
    if file is not None:
        df = pd.read_csv(file, sep="\t", header=None)
        df.columns = ["Sentence"]
        df.reset_index(drop=True, inplace=True)

        # TODO: Run the model
        df["ALDi"] = compute_ALDi(df["Sentence"].tolist())

        # A horizontal rule
        st.markdown("""---""")

        chart = (
            alt.Chart(df.reset_index())
            .mark_area(color="darkorange", opacity=0.5)
            .encode(
                x=X(field="index", title="Sentence Index"),
                y=Y("ALDi", scale=Scale(domain=[0, 1])),
            )
        )
        st.altair_chart(chart.interactive(), use_container_width=True)

        col1, col2 = st.columns([4, 1])

        with col1:
            # Display the output
            st.table(
                df,
            )

        with col2:
            # Add a download button
            csv = convert_df(df)
            st.download_button(
                label=":file_folder: Download predictions as CSV",
                data=csv,
                file_name="ALDi_scores.csv",
                mime="text/csv",
            )