Spaces:
Running
Running
Track the streamlit application file
Browse files- app.py +68 -0
- constants.py +3 -0
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hint: this cheatsheet is magic! https://cheat-sheet.streamlit.app/
|
| 2 |
+
|
| 3 |
+
import constants
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from transformers import BertForSequenceClassification, AutoTokenizer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@st.cache_data
|
| 10 |
+
def convert_df(df):
|
| 11 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
| 12 |
+
return df.to_csv(index=None).encode("utf-8")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def compute_ALDi(inputs):
|
| 16 |
+
return 0.5
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
input_type = st.sidebar.radio(
|
| 20 |
+
"Select the input type:", [constants.CHOICE_FILE, constants.CHOICE_TEXT]
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
st.title(constants.TITLE)
|
| 24 |
+
|
| 25 |
+
if input_type == constants.CHOICE_TEXT:
|
| 26 |
+
sent = st.text_input("Arabic Sentence:", placeholder="Enter an Arabic sentence.")
|
| 27 |
+
|
| 28 |
+
# TODO: Check if this is needed!
|
| 29 |
+
st.button("Submit")
|
| 30 |
+
|
| 31 |
+
if sent:
|
| 32 |
+
ALDi_score = compute_ALDi(sent)
|
| 33 |
+
st.write(ALDi_score)
|
| 34 |
+
|
| 35 |
+
else:
|
| 36 |
+
file = st.file_uploader("Upload a file", type=["txt"])
|
| 37 |
+
if file is not None:
|
| 38 |
+
df = pd.read_csv(file, sep="\t", header=None)
|
| 39 |
+
df.columns = ["Sentence"]
|
| 40 |
+
|
| 41 |
+
# TODO: Run the model
|
| 42 |
+
df["ALDi"] = df["Sentence"].apply(lambda s: compute_ALDi(s))
|
| 43 |
+
|
| 44 |
+
# A horizontal rule
|
| 45 |
+
st.markdown("""---""")
|
| 46 |
+
|
| 47 |
+
col1, col2 = st.columns([2, 3])
|
| 48 |
+
|
| 49 |
+
with col1:
|
| 50 |
+
# Add a download button
|
| 51 |
+
csv = convert_df(df)
|
| 52 |
+
|
| 53 |
+
st.download_button(
|
| 54 |
+
label=":file_folder: Download predictions as CSV",
|
| 55 |
+
data=csv,
|
| 56 |
+
file_name="ALDi_scores.csv",
|
| 57 |
+
mime="text/csv",
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Display the output
|
| 61 |
+
st.dataframe(
|
| 62 |
+
df,
|
| 63 |
+
hide_index=True,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
with col2:
|
| 67 |
+
# TODO: Add the visualization
|
| 68 |
+
st.image("https://static.streamlit.io/examples/dog.jpg")
|
constants.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CHOICE_TEXT = "Input Text"
|
| 2 |
+
CHOICE_FILE = "Upload File"
|
| 3 |
+
TITLE = "ALDi: Arabic Level of Dialectness"
|